单幅图像超分辨率的最优深度多路径自关注

Nisawan Ngambenjavichaikul, Sovann Chen, S. Aramvith
{"title":"单幅图像超分辨率的最优深度多路径自关注","authors":"Nisawan Ngambenjavichaikul, Sovann Chen, S. Aramvith","doi":"10.23919/APSIPAASC55919.2022.9979962","DOIUrl":null,"url":null,"abstract":"Image restoration, such as single image super-resolution (SISR), is a long-established low-level vision issue that intends to regenerate high-resolution (HR) images from low-resolution (LR) input counterparts. While state-of-the-art image super-resolution models are based on the well-known convolutional neural network (CNN), many self-attention-based or transformer-based experiment attempts have been conducted and have shown promising performance on vision problems. A powerful baseline model based on the swin transformer adopts the shifted window approach. It enhances the capability by restricting the model to compute the self-attention function only on non-superimpose local windows while enabling cross-window relations. However, the architecture design is manually fixed. Therefore, the results are not achieving optimal performance. This paper presents an optimal deep multi-route self-attention network for single image super-resolution (ODMR-SASR). The genetic algorithm (GA) is introduced to discover the optimal number of filters and layers. Experimental results demonstrate that the proposed optimization technique can produce a progressive SR image quality.","PeriodicalId":382967,"journal":{"name":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"46 24","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Deep Multi-Route Self-Attention for Single Image Super-Resolution\",\"authors\":\"Nisawan Ngambenjavichaikul, Sovann Chen, S. Aramvith\",\"doi\":\"10.23919/APSIPAASC55919.2022.9979962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image restoration, such as single image super-resolution (SISR), is a long-established low-level vision issue that intends to regenerate high-resolution (HR) images from low-resolution (LR) input counterparts. While state-of-the-art image super-resolution models are based on the well-known convolutional neural network (CNN), many self-attention-based or transformer-based experiment attempts have been conducted and have shown promising performance on vision problems. A powerful baseline model based on the swin transformer adopts the shifted window approach. It enhances the capability by restricting the model to compute the self-attention function only on non-superimpose local windows while enabling cross-window relations. However, the architecture design is manually fixed. Therefore, the results are not achieving optimal performance. This paper presents an optimal deep multi-route self-attention network for single image super-resolution (ODMR-SASR). The genetic algorithm (GA) is introduced to discover the optimal number of filters and layers. Experimental results demonstrate that the proposed optimization technique can produce a progressive SR image quality.\",\"PeriodicalId\":382967,\"journal\":{\"name\":\"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"46 24\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/APSIPAASC55919.2022.9979962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPAASC55919.2022.9979962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像恢复,如单图像超分辨率(SISR),是一个长期存在的低水平视觉问题,旨在从低分辨率(LR)输入对立物中再生高分辨率(HR)图像。虽然最先进的图像超分辨率模型是基于众所周知的卷积神经网络(CNN),但许多基于自注意力或基于变压器的实验尝试已经进行,并在视觉问题上显示出有希望的性能。基于swin变压器的强大基线模型采用移窗方法。它通过限制模型仅在非重叠的局部窗口上计算自关注函数而支持跨窗口关系来增强能力。然而,架构设计是手动固定的。因此,结果没有达到最佳性能。提出了一种用于单幅图像超分辨率(ODMR-SASR)的最优深度多路由自关注网络。引入遗传算法(GA)来发现最优滤波器和层数。实验结果表明,所提出的优化技术可以产生渐进的SR图像质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Deep Multi-Route Self-Attention for Single Image Super-Resolution
Image restoration, such as single image super-resolution (SISR), is a long-established low-level vision issue that intends to regenerate high-resolution (HR) images from low-resolution (LR) input counterparts. While state-of-the-art image super-resolution models are based on the well-known convolutional neural network (CNN), many self-attention-based or transformer-based experiment attempts have been conducted and have shown promising performance on vision problems. A powerful baseline model based on the swin transformer adopts the shifted window approach. It enhances the capability by restricting the model to compute the self-attention function only on non-superimpose local windows while enabling cross-window relations. However, the architecture design is manually fixed. Therefore, the results are not achieving optimal performance. This paper presents an optimal deep multi-route self-attention network for single image super-resolution (ODMR-SASR). The genetic algorithm (GA) is introduced to discover the optimal number of filters and layers. Experimental results demonstrate that the proposed optimization technique can produce a progressive SR image quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信