一种基于反馈的方法,用于分割银行支票上手写的法定金额

Jun Zhou, C. Suen, Ke Liu
{"title":"一种基于反馈的方法,用于分割银行支票上手写的法定金额","authors":"Jun Zhou, C. Suen, Ke Liu","doi":"10.1109/ICDAR.2001.953914","DOIUrl":null,"url":null,"abstract":"The proposed feedback-based approach is implemented in two steps. In the first step, segmentation is done according to the structural features between the connected components in the legal amounts. In the second step, a feedback process is introduced to re-segment the parts that could not be identified in the first step. Then a multiple neural network classifier is used to verify the re-segmentation result. The confidence value produced by the classifier is used to determine the best segmentation points. This approach is tested on a CENPARMI database and the result indicates that the correct segmentation rate increased by 13.4% from the previous approach.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"52 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A feedback-based approach for segmenting handwritten legal amounts on bank cheques\",\"authors\":\"Jun Zhou, C. Suen, Ke Liu\",\"doi\":\"10.1109/ICDAR.2001.953914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proposed feedback-based approach is implemented in two steps. In the first step, segmentation is done according to the structural features between the connected components in the legal amounts. In the second step, a feedback process is introduced to re-segment the parts that could not be identified in the first step. Then a multiple neural network classifier is used to verify the re-segmentation result. The confidence value produced by the classifier is used to determine the best segmentation points. This approach is tested on a CENPARMI database and the result indicates that the correct segmentation rate increased by 13.4% from the previous approach.\",\"PeriodicalId\":277816,\"journal\":{\"name\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"volume\":\"52 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2001.953914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

所提出的基于反馈的方法分两步实现。第一步,根据法定金额中关联成分之间的结构特征进行分割。在第二步中,引入反馈过程对第一步中无法识别的部件进行重新分割。然后利用多神经网络分类器对再分割结果进行验证。使用分类器产生的置信度值来确定最佳分割点。在CENPARMI数据库上对该方法进行了测试,结果表明,该方法的正确分割率比前一种方法提高了13.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A feedback-based approach for segmenting handwritten legal amounts on bank cheques
The proposed feedback-based approach is implemented in two steps. In the first step, segmentation is done according to the structural features between the connected components in the legal amounts. In the second step, a feedback process is introduced to re-segment the parts that could not be identified in the first step. Then a multiple neural network classifier is used to verify the re-segmentation result. The confidence value produced by the classifier is used to determine the best segmentation points. This approach is tested on a CENPARMI database and the result indicates that the correct segmentation rate increased by 13.4% from the previous approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信