{"title":"一种基于反馈的方法,用于分割银行支票上手写的法定金额","authors":"Jun Zhou, C. Suen, Ke Liu","doi":"10.1109/ICDAR.2001.953914","DOIUrl":null,"url":null,"abstract":"The proposed feedback-based approach is implemented in two steps. In the first step, segmentation is done according to the structural features between the connected components in the legal amounts. In the second step, a feedback process is introduced to re-segment the parts that could not be identified in the first step. Then a multiple neural network classifier is used to verify the re-segmentation result. The confidence value produced by the classifier is used to determine the best segmentation points. This approach is tested on a CENPARMI database and the result indicates that the correct segmentation rate increased by 13.4% from the previous approach.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"52 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A feedback-based approach for segmenting handwritten legal amounts on bank cheques\",\"authors\":\"Jun Zhou, C. Suen, Ke Liu\",\"doi\":\"10.1109/ICDAR.2001.953914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proposed feedback-based approach is implemented in two steps. In the first step, segmentation is done according to the structural features between the connected components in the legal amounts. In the second step, a feedback process is introduced to re-segment the parts that could not be identified in the first step. Then a multiple neural network classifier is used to verify the re-segmentation result. The confidence value produced by the classifier is used to determine the best segmentation points. This approach is tested on a CENPARMI database and the result indicates that the correct segmentation rate increased by 13.4% from the previous approach.\",\"PeriodicalId\":277816,\"journal\":{\"name\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"volume\":\"52 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2001.953914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A feedback-based approach for segmenting handwritten legal amounts on bank cheques
The proposed feedback-based approach is implemented in two steps. In the first step, segmentation is done according to the structural features between the connected components in the legal amounts. In the second step, a feedback process is introduced to re-segment the parts that could not be identified in the first step. Then a multiple neural network classifier is used to verify the re-segmentation result. The confidence value produced by the classifier is used to determine the best segmentation points. This approach is tested on a CENPARMI database and the result indicates that the correct segmentation rate increased by 13.4% from the previous approach.