Leon Brackmann, Tobias Ziegler, A. Jafari, D. Wouters, M. Tahoori, S. Menzel
{"title":"基于氧化物的记忆型三元内容可寻址存储器的设计限制","authors":"Leon Brackmann, Tobias Ziegler, A. Jafari, D. Wouters, M. Tahoori, S. Menzel","doi":"10.1109/ISCAS46773.2023.10181488","DOIUrl":null,"url":null,"abstract":"Memristive devices offer energy and area efficient non-volatile data storage for data-intense Ternary Content Ad-dressable Memory (TCAM) architectures. However, depending on the storage implementation in the bitcell design, the matching functionality shows multiple undesired discharge effects leading to false look-up results. In particular, the ternary storage suffers during the look-up operation from a poor resistance ratio, match-line leakage and device variabilities. In this paper, we investigate the inherent, design-dependent limitations in the ternary state storage capability due to different memristive TCAM bitcell design parameters and device variabilities. We test these limits based on variability-aware device simulations and isolate crucial parameters for the optimization of memristive TCAMs.","PeriodicalId":177320,"journal":{"name":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"1 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design Limitations in Oxide-Based Memristive Ternary Content Addressable Memories\",\"authors\":\"Leon Brackmann, Tobias Ziegler, A. Jafari, D. Wouters, M. Tahoori, S. Menzel\",\"doi\":\"10.1109/ISCAS46773.2023.10181488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memristive devices offer energy and area efficient non-volatile data storage for data-intense Ternary Content Ad-dressable Memory (TCAM) architectures. However, depending on the storage implementation in the bitcell design, the matching functionality shows multiple undesired discharge effects leading to false look-up results. In particular, the ternary storage suffers during the look-up operation from a poor resistance ratio, match-line leakage and device variabilities. In this paper, we investigate the inherent, design-dependent limitations in the ternary state storage capability due to different memristive TCAM bitcell design parameters and device variabilities. We test these limits based on variability-aware device simulations and isolate crucial parameters for the optimization of memristive TCAMs.\",\"PeriodicalId\":177320,\"journal\":{\"name\":\"2023 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"1 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS46773.2023.10181488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS46773.2023.10181488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design Limitations in Oxide-Based Memristive Ternary Content Addressable Memories
Memristive devices offer energy and area efficient non-volatile data storage for data-intense Ternary Content Ad-dressable Memory (TCAM) architectures. However, depending on the storage implementation in the bitcell design, the matching functionality shows multiple undesired discharge effects leading to false look-up results. In particular, the ternary storage suffers during the look-up operation from a poor resistance ratio, match-line leakage and device variabilities. In this paper, we investigate the inherent, design-dependent limitations in the ternary state storage capability due to different memristive TCAM bitcell design parameters and device variabilities. We test these limits based on variability-aware device simulations and isolate crucial parameters for the optimization of memristive TCAMs.