基于机器学习的蜂窝网络能量优化MIMO使能技术

Mariam M. N. Aboelwafa, M. Zaki, Ayman Gaber, Karim G. Seddik, Y. Gadallah, A. Elezabi
{"title":"基于机器学习的蜂窝网络能量优化MIMO使能技术","authors":"Mariam M. N. Aboelwafa, M. Zaki, Ayman Gaber, Karim G. Seddik, Y. Gadallah, A. Elezabi","doi":"10.1109/CCNC46108.2020.9045149","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of energy optimization in mobile networks by enabling the MIMO feature only when necessary. Enabling MIMO features at the base station increases energy consumption unnecessarily under many operating conditions. In this study, we employ machine learning-based approaches to decide on whether a SISO scheme can achieve the required Quality of Experience (QoE). If SISO can satisfy the target QoE, the base-station can decide to switch the MIMO feature off which can result in considerable energy savings. We consider two different machine learning approaches, namely, multi-layer perceptron (MLP) and recurrent neural networks (RNNs), to learn the SISO features from realistic mobile network data. The trained models are tested against the data obtained from MIMO cells in which the MIMO feature is disabled. Our results show the effectiveness of our proposed approach which presents a real-time, automated approach for MIMO enabling decisions.","PeriodicalId":443862,"journal":{"name":"2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC)","volume":"53 21","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Machine Learning-Based MIMO Enabling Techniques for Energy Optimization in Cellular Networks\",\"authors\":\"Mariam M. N. Aboelwafa, M. Zaki, Ayman Gaber, Karim G. Seddik, Y. Gadallah, A. Elezabi\",\"doi\":\"10.1109/CCNC46108.2020.9045149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the problem of energy optimization in mobile networks by enabling the MIMO feature only when necessary. Enabling MIMO features at the base station increases energy consumption unnecessarily under many operating conditions. In this study, we employ machine learning-based approaches to decide on whether a SISO scheme can achieve the required Quality of Experience (QoE). If SISO can satisfy the target QoE, the base-station can decide to switch the MIMO feature off which can result in considerable energy savings. We consider two different machine learning approaches, namely, multi-layer perceptron (MLP) and recurrent neural networks (RNNs), to learn the SISO features from realistic mobile network data. The trained models are tested against the data obtained from MIMO cells in which the MIMO feature is disabled. Our results show the effectiveness of our proposed approach which presents a real-time, automated approach for MIMO enabling decisions.\",\"PeriodicalId\":443862,\"journal\":{\"name\":\"2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC)\",\"volume\":\"53 21\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCNC46108.2020.9045149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC46108.2020.9045149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们考虑了移动网络中的能量优化问题,仅在必要时启用MIMO特征。在许多操作条件下,在基站启用MIMO功能会增加不必要的能耗。在本研究中,我们采用基于机器学习的方法来确定SISO方案是否可以达到所需的体验质量(QoE)。如果SISO能够满足目标QoE,基站可以决定关闭MIMO功能,这可以节省大量能源。我们考虑了两种不同的机器学习方法,即多层感知器(MLP)和递归神经网络(rnn),以从现实的移动网络数据中学习SISO特征。训练的模型针对从MIMO单元中获得的数据进行测试,其中MIMO特征被禁用。我们的结果表明了我们提出的方法的有效性,该方法为MIMO实现决策提供了实时、自动化的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning-Based MIMO Enabling Techniques for Energy Optimization in Cellular Networks
In this paper, we consider the problem of energy optimization in mobile networks by enabling the MIMO feature only when necessary. Enabling MIMO features at the base station increases energy consumption unnecessarily under many operating conditions. In this study, we employ machine learning-based approaches to decide on whether a SISO scheme can achieve the required Quality of Experience (QoE). If SISO can satisfy the target QoE, the base-station can decide to switch the MIMO feature off which can result in considerable energy savings. We consider two different machine learning approaches, namely, multi-layer perceptron (MLP) and recurrent neural networks (RNNs), to learn the SISO features from realistic mobile network data. The trained models are tested against the data obtained from MIMO cells in which the MIMO feature is disabled. Our results show the effectiveness of our proposed approach which presents a real-time, automated approach for MIMO enabling decisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信