{"title":"拉普拉斯支持向量机分析","authors":"Juan Huang, Hong Chen, Yanfang Tao","doi":"10.1109/ICWAPR.2009.5207440","DOIUrl":null,"url":null,"abstract":"The goal of semi-supervised learning algorithm is to effectively incorporate labeled and unlabeled data in a general-purpose learner with small misclassification error. Although there are various algorithms to implement semi-supervised learning task, the crucial issue of dependence of generalization error on the number of labeled and unlabeled data is still poorly understood. In this paper, we consider the Laplacian Support Vector Machines (LapSVMs) and establish its error analysis.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"31 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Laplacian Support Vector Machines\",\"authors\":\"Juan Huang, Hong Chen, Yanfang Tao\",\"doi\":\"10.1109/ICWAPR.2009.5207440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of semi-supervised learning algorithm is to effectively incorporate labeled and unlabeled data in a general-purpose learner with small misclassification error. Although there are various algorithms to implement semi-supervised learning task, the crucial issue of dependence of generalization error on the number of labeled and unlabeled data is still poorly understood. In this paper, we consider the Laplacian Support Vector Machines (LapSVMs) and establish its error analysis.\",\"PeriodicalId\":424264,\"journal\":{\"name\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"31 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2009.5207440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The goal of semi-supervised learning algorithm is to effectively incorporate labeled and unlabeled data in a general-purpose learner with small misclassification error. Although there are various algorithms to implement semi-supervised learning task, the crucial issue of dependence of generalization error on the number of labeled and unlabeled data is still poorly understood. In this paper, we consider the Laplacian Support Vector Machines (LapSVMs) and establish its error analysis.