拉普拉斯支持向量机分析

Juan Huang, Hong Chen, Yanfang Tao
{"title":"拉普拉斯支持向量机分析","authors":"Juan Huang, Hong Chen, Yanfang Tao","doi":"10.1109/ICWAPR.2009.5207440","DOIUrl":null,"url":null,"abstract":"The goal of semi-supervised learning algorithm is to effectively incorporate labeled and unlabeled data in a general-purpose learner with small misclassification error. Although there are various algorithms to implement semi-supervised learning task, the crucial issue of dependence of generalization error on the number of labeled and unlabeled data is still poorly understood. In this paper, we consider the Laplacian Support Vector Machines (LapSVMs) and establish its error analysis.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"31 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Laplacian Support Vector Machines\",\"authors\":\"Juan Huang, Hong Chen, Yanfang Tao\",\"doi\":\"10.1109/ICWAPR.2009.5207440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of semi-supervised learning algorithm is to effectively incorporate labeled and unlabeled data in a general-purpose learner with small misclassification error. Although there are various algorithms to implement semi-supervised learning task, the crucial issue of dependence of generalization error on the number of labeled and unlabeled data is still poorly understood. In this paper, we consider the Laplacian Support Vector Machines (LapSVMs) and establish its error analysis.\",\"PeriodicalId\":424264,\"journal\":{\"name\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"31 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2009.5207440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

半监督学习算法的目标是有效地将标记和未标记的数据合并到通用学习器中,并且错误分类误差很小。尽管实现半监督学习任务的算法有很多种,但对于泛化误差与标记和未标记数据数量的依赖关系这一关键问题,人们仍然知之甚少。本文考虑了拉普拉斯支持向量机,并建立了其误差分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Laplacian Support Vector Machines
The goal of semi-supervised learning algorithm is to effectively incorporate labeled and unlabeled data in a general-purpose learner with small misclassification error. Although there are various algorithms to implement semi-supervised learning task, the crucial issue of dependence of generalization error on the number of labeled and unlabeled data is still poorly understood. In this paper, we consider the Laplacian Support Vector Machines (LapSVMs) and establish its error analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信