柔性缆索龙门起重机状态反馈非线性H∞边界控制

L. Aguilar
{"title":"柔性缆索龙门起重机状态反馈非线性H∞边界控制","authors":"L. Aguilar","doi":"10.1109/comrob53312.2021.9628529","DOIUrl":null,"url":null,"abstract":"We have solved the state-feedback nonlinear ${\\mathcal{H}_\\infty }$ boundary control to stabilize a flexible cable of a gantry crane. The cable is not assumed rigid; therefore, we represented the cable dynamics as a hyperbolic partial differential equation. We proved the asymptotical stability of the unperturbed closed-loop system through a strict Lyapunov functional. Moreover, we demonstrated the disturbance attenuation level through the ℒ2-gain analysis. We corroborate the theoretical results by numerical simulations developed in a dynamic model of a laboratory gantry crane.","PeriodicalId":191869,"journal":{"name":"2021 XXIII Robotics Mexican Congress (ComRob)","volume":"22 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State-Feedback Nonlinear H∞ Boundary Control for a Gantry Crane with Flexible Cable\",\"authors\":\"L. Aguilar\",\"doi\":\"10.1109/comrob53312.2021.9628529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have solved the state-feedback nonlinear ${\\\\mathcal{H}_\\\\infty }$ boundary control to stabilize a flexible cable of a gantry crane. The cable is not assumed rigid; therefore, we represented the cable dynamics as a hyperbolic partial differential equation. We proved the asymptotical stability of the unperturbed closed-loop system through a strict Lyapunov functional. Moreover, we demonstrated the disturbance attenuation level through the ℒ2-gain analysis. We corroborate the theoretical results by numerical simulations developed in a dynamic model of a laboratory gantry crane.\",\"PeriodicalId\":191869,\"journal\":{\"name\":\"2021 XXIII Robotics Mexican Congress (ComRob)\",\"volume\":\"22 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 XXIII Robotics Mexican Congress (ComRob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/comrob53312.2021.9628529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 XXIII Robotics Mexican Congress (ComRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comrob53312.2021.9628529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

求解了龙门起重机柔性索稳定的状态反馈非线性${\mathcal{H}_\infty }$边界控制问题。电缆不假定为刚性;因此,我们将索的动力学表示为双曲型偏微分方程。通过严格Lyapunov泛函证明了非摄动闭环系统的渐近稳定性。此外,我们还通过增益分析证明了干扰衰减的程度。通过实验室龙门起重机动力学模型的数值模拟验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State-Feedback Nonlinear H∞ Boundary Control for a Gantry Crane with Flexible Cable
We have solved the state-feedback nonlinear ${\mathcal{H}_\infty }$ boundary control to stabilize a flexible cable of a gantry crane. The cable is not assumed rigid; therefore, we represented the cable dynamics as a hyperbolic partial differential equation. We proved the asymptotical stability of the unperturbed closed-loop system through a strict Lyapunov functional. Moreover, we demonstrated the disturbance attenuation level through the ℒ2-gain analysis. We corroborate the theoretical results by numerical simulations developed in a dynamic model of a laboratory gantry crane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信