可实现性的一般概念

L. Birkedal
{"title":"可实现性的一般概念","authors":"L. Birkedal","doi":"10.2178/bsl/1182353873","DOIUrl":null,"url":null,"abstract":"We present a general notion of realizability, encompassing both standard Kleene style realizability over partial combinatory algebras and Kleene style realizability over more general structures, including all partial cartesian closed categories. We show how the general notion of realizability can be used to get models of dependent predicate logic, thus obtaining as a corollary (the known result) that the category Equ of equilogical spaces models dependent predicate logic. Moreover, we characterize when the general notion of realizability gives rise to a topos.","PeriodicalId":300113,"journal":{"name":"Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332)","volume":"32 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A general notion of realizability\",\"authors\":\"L. Birkedal\",\"doi\":\"10.2178/bsl/1182353873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a general notion of realizability, encompassing both standard Kleene style realizability over partial combinatory algebras and Kleene style realizability over more general structures, including all partial cartesian closed categories. We show how the general notion of realizability can be used to get models of dependent predicate logic, thus obtaining as a corollary (the known result) that the category Equ of equilogical spaces models dependent predicate logic. Moreover, we characterize when the general notion of realizability gives rise to a topos.\",\"PeriodicalId\":300113,\"journal\":{\"name\":\"Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332)\",\"volume\":\"32 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2178/bsl/1182353873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2178/bsl/1182353873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们提出了可实现性的一般概念,包括部分组合代数上的标准Kleene型可实现性和更一般结构上的Kleene型可实现性,包括所有的部分笛卡尔闭范畴。我们展示了如何利用可实现性的一般概念来得到依赖谓词逻辑的模型,从而得到等价空间的范畴方程模型依赖谓词逻辑的推论(已知结果)。此外,我们还描述了可实现性的一般概念何时产生主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A general notion of realizability
We present a general notion of realizability, encompassing both standard Kleene style realizability over partial combinatory algebras and Kleene style realizability over more general structures, including all partial cartesian closed categories. We show how the general notion of realizability can be used to get models of dependent predicate logic, thus obtaining as a corollary (the known result) that the category Equ of equilogical spaces models dependent predicate logic. Moreover, we characterize when the general notion of realizability gives rise to a topos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信