加入cnn:情感分类的堆叠模型

D. Vishwanath, Shubham Gupta
{"title":"加入cnn:情感分类的堆叠模型","authors":"D. Vishwanath, Shubham Gupta","doi":"10.1109/INDICON.2016.7839062","DOIUrl":null,"url":null,"abstract":"In the recent years, sentiment analysis has emerged as a major research problem in the field of Natural Language Processing. Here, the problem is to identify the sentiment/emotion in given sentence/paragraph. Usually it is positive, negative and neutral. Here, we consider only binary classification task (positive and negative). We have considered the best performing sentiment analysis model which is a ensemble of NB-SVM, Paragraph2Vec and RNN. We added CNN into this stacking model and showed that our ensemble model perform better than the existing one. We achieved the state of the art performance on IMDB Movie review dataset, Stanford sentiment treebank dataset (SST) and Elec reviews dataset.","PeriodicalId":283953,"journal":{"name":"2016 IEEE Annual India Conference (INDICON)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Adding CNNs to the Mix: Stacking models for sentiment classification\",\"authors\":\"D. Vishwanath, Shubham Gupta\",\"doi\":\"10.1109/INDICON.2016.7839062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the recent years, sentiment analysis has emerged as a major research problem in the field of Natural Language Processing. Here, the problem is to identify the sentiment/emotion in given sentence/paragraph. Usually it is positive, negative and neutral. Here, we consider only binary classification task (positive and negative). We have considered the best performing sentiment analysis model which is a ensemble of NB-SVM, Paragraph2Vec and RNN. We added CNN into this stacking model and showed that our ensemble model perform better than the existing one. We achieved the state of the art performance on IMDB Movie review dataset, Stanford sentiment treebank dataset (SST) and Elec reviews dataset.\",\"PeriodicalId\":283953,\"journal\":{\"name\":\"2016 IEEE Annual India Conference (INDICON)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Annual India Conference (INDICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDICON.2016.7839062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Annual India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDICON.2016.7839062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近年来,情感分析已成为自然语言处理领域的一个重要研究课题。在这里,问题是识别给定句子/段落中的情绪/情感。通常它是积极的,消极的和中性的。这里,我们只考虑二元分类任务(正分类和负分类)。我们考虑了表现最好的情感分析模型,它是NB-SVM,分段vec和RNN的集合。我们将CNN加入到这个叠加模型中,结果表明我们的集成模型比现有的集成模型性能更好。我们在IMDB电影评论数据集、斯坦福情感树库数据集(SST)和Elec评论数据集上实现了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adding CNNs to the Mix: Stacking models for sentiment classification
In the recent years, sentiment analysis has emerged as a major research problem in the field of Natural Language Processing. Here, the problem is to identify the sentiment/emotion in given sentence/paragraph. Usually it is positive, negative and neutral. Here, we consider only binary classification task (positive and negative). We have considered the best performing sentiment analysis model which is a ensemble of NB-SVM, Paragraph2Vec and RNN. We added CNN into this stacking model and showed that our ensemble model perform better than the existing one. We achieved the state of the art performance on IMDB Movie review dataset, Stanford sentiment treebank dataset (SST) and Elec reviews dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信