{"title":"双层石墨烯的量子电容","authors":"G. Kliros","doi":"10.1109/SMICND.2010.5650376","DOIUrl":null,"url":null,"abstract":"We present a simple phenomenological model for the quantum capacitance of bilayer graphene. Quantum capacitance is calculated from the broadened density of states taking into account electron-hole puddles and possible finite lifetime of electronic states through a Gaussian broadening distribution. The obtained results are in agreement with many features recently observed in quantum capacitance measurements on gated bilayer graphene. The temperature dependence of quantum capacitance is also investigated.","PeriodicalId":377326,"journal":{"name":"CAS 2010 Proceedings (International Semiconductor Conference)","volume":"26 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Quantum capacitance of bilayer graphene\",\"authors\":\"G. Kliros\",\"doi\":\"10.1109/SMICND.2010.5650376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a simple phenomenological model for the quantum capacitance of bilayer graphene. Quantum capacitance is calculated from the broadened density of states taking into account electron-hole puddles and possible finite lifetime of electronic states through a Gaussian broadening distribution. The obtained results are in agreement with many features recently observed in quantum capacitance measurements on gated bilayer graphene. The temperature dependence of quantum capacitance is also investigated.\",\"PeriodicalId\":377326,\"journal\":{\"name\":\"CAS 2010 Proceedings (International Semiconductor Conference)\",\"volume\":\"26 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAS 2010 Proceedings (International Semiconductor Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMICND.2010.5650376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAS 2010 Proceedings (International Semiconductor Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMICND.2010.5650376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a simple phenomenological model for the quantum capacitance of bilayer graphene. Quantum capacitance is calculated from the broadened density of states taking into account electron-hole puddles and possible finite lifetime of electronic states through a Gaussian broadening distribution. The obtained results are in agreement with many features recently observed in quantum capacitance measurements on gated bilayer graphene. The temperature dependence of quantum capacitance is also investigated.