用于延迟不敏感设计的控制网络生成器

E. Kilada, K. Stevens
{"title":"用于延迟不敏感设计的控制网络生成器","authors":"E. Kilada, K. Stevens","doi":"10.1109/DATE.2010.5457101","DOIUrl":null,"url":null,"abstract":"Creating latency insensitive or asynchronous designs from clocked designs has potential benefits of increased modularity and robustness to variations. Several transformations have been suggested in the literature and each of these require a handshake control network (examples include synchronous elasticization and desynchronization). Numerous implementations of the control network are possible. This paper reports on an algorithm that has been proven to generate an optimal control network consisting of the minimum number of 2-input join and 2-output fork control components. This can substantially reduce the area and power consumption of a system. The algorithm has been implemented in a CAD tool, called CNG. It has been applied to the MiniMIPS processor showing a 14% reduction in the number of control steering units over a hand optimized design in a contemporary work.","PeriodicalId":432902,"journal":{"name":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Control network generator for latency insensitive designs\",\"authors\":\"E. Kilada, K. Stevens\",\"doi\":\"10.1109/DATE.2010.5457101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Creating latency insensitive or asynchronous designs from clocked designs has potential benefits of increased modularity and robustness to variations. Several transformations have been suggested in the literature and each of these require a handshake control network (examples include synchronous elasticization and desynchronization). Numerous implementations of the control network are possible. This paper reports on an algorithm that has been proven to generate an optimal control network consisting of the minimum number of 2-input join and 2-output fork control components. This can substantially reduce the area and power consumption of a system. The algorithm has been implemented in a CAD tool, called CNG. It has been applied to the MiniMIPS processor showing a 14% reduction in the number of control steering units over a hand optimized design in a contemporary work.\",\"PeriodicalId\":432902,\"journal\":{\"name\":\"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2010.5457101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2010.5457101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

从时钟设计创建延迟不敏感或异步设计具有增加模块化和对变化的健壮性的潜在好处。文献中提出了几种转换,每种转换都需要握手控制网络(示例包括同步弹性化和去同步化)。控制网络的多种实现是可能的。本文报告了一种算法,该算法已被证明可以生成由最小数量的2输入连接和2输出分叉控制组成的最优控制网络。这可以大大减少系统的面积和功耗。该算法已在CAD工具CNG中实现。它已应用于MiniMIPS处理器,在当代工作中显示,与手动优化设计相比,控制转向单元的数量减少了14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control network generator for latency insensitive designs
Creating latency insensitive or asynchronous designs from clocked designs has potential benefits of increased modularity and robustness to variations. Several transformations have been suggested in the literature and each of these require a handshake control network (examples include synchronous elasticization and desynchronization). Numerous implementations of the control network are possible. This paper reports on an algorithm that has been proven to generate an optimal control network consisting of the minimum number of 2-input join and 2-output fork control components. This can substantially reduce the area and power consumption of a system. The algorithm has been implemented in a CAD tool, called CNG. It has been applied to the MiniMIPS processor showing a 14% reduction in the number of control steering units over a hand optimized design in a contemporary work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信