Shihui Yin, Bo Zhang, Minkyu Kim, Jyotishman Saikia, Soon-Chan Kwon, Sungmeen Myung, Hyunsoo Kim, Sang Joon Kim, Mingoo Seok, Jae-sun Seo
{"title":"基于片上深度神经网络推理的34mb可编程内存计算加速器","authors":"Shihui Yin, Bo Zhang, Minkyu Kim, Jyotishman Saikia, Soon-Chan Kwon, Sungmeen Myung, Hyunsoo Kim, Sang Joon Kim, Mingoo Seok, Jae-sun Seo","doi":"10.23919/VLSICircuits52068.2021.9492403","DOIUrl":null,"url":null,"abstract":"We present a programmable in-memory computing (IMC) accelerator integrating 108 capacitive-coupling-based IMC SRAM macros of a total size of 3.4 Mb, demonstrating one of the largest IMC hardware to date. We developed a custom ISA featuring IMC and SIMD functional units with hardware loop to support a range of deep neural network (DNN) layer types. The 28nm prototype chip achieves system-level peak energy-efficiency of 437 TOPS/W and peak throughput of 4.9 TOPS at 40MHz, 1V supply.","PeriodicalId":106356,"journal":{"name":"2021 Symposium on VLSI Circuits","volume":"17 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"PIMCA: A 3.4-Mb Programmable In-Memory Computing Accelerator in 28nm for On-Chip DNN Inference\",\"authors\":\"Shihui Yin, Bo Zhang, Minkyu Kim, Jyotishman Saikia, Soon-Chan Kwon, Sungmeen Myung, Hyunsoo Kim, Sang Joon Kim, Mingoo Seok, Jae-sun Seo\",\"doi\":\"10.23919/VLSICircuits52068.2021.9492403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a programmable in-memory computing (IMC) accelerator integrating 108 capacitive-coupling-based IMC SRAM macros of a total size of 3.4 Mb, demonstrating one of the largest IMC hardware to date. We developed a custom ISA featuring IMC and SIMD functional units with hardware loop to support a range of deep neural network (DNN) layer types. The 28nm prototype chip achieves system-level peak energy-efficiency of 437 TOPS/W and peak throughput of 4.9 TOPS at 40MHz, 1V supply.\",\"PeriodicalId\":106356,\"journal\":{\"name\":\"2021 Symposium on VLSI Circuits\",\"volume\":\"17 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSICircuits52068.2021.9492403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSICircuits52068.2021.9492403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PIMCA: A 3.4-Mb Programmable In-Memory Computing Accelerator in 28nm for On-Chip DNN Inference
We present a programmable in-memory computing (IMC) accelerator integrating 108 capacitive-coupling-based IMC SRAM macros of a total size of 3.4 Mb, demonstrating one of the largest IMC hardware to date. We developed a custom ISA featuring IMC and SIMD functional units with hardware loop to support a range of deep neural network (DNN) layer types. The 28nm prototype chip achieves system-level peak energy-efficiency of 437 TOPS/W and peak throughput of 4.9 TOPS at 40MHz, 1V supply.