{"title":"用时间双聚类方法从时间序列基因表达数据中检测相干局部模式","authors":"Jibin Qu, Xiang-Sun Zhang, Ling-Yun Wu, Yong Wang, Luonan Chen","doi":"10.1109/ISB.2011.6033184","DOIUrl":null,"url":null,"abstract":"Time-series gene expression data analysis plays an important role in bioinformatics. In this paper, we propose a biclustering method to detect local expression patterns in time-series gene expression data by performing clustering on both gene and time dimensions. Our method aims to find gene subsets which show coherent expression profiles in some time subsets which have a consecutive order in a bicluster. Specifically, our temporal biclustering method is composed of a discretization procedure and a follow-up sequence alignment, which can identify similar local expression profiles and further reveal coherent local relations such as complementary and time-lagged coherence. We apply our method to yeast cell cycle data, and find several biologically important biclusters.","PeriodicalId":355056,"journal":{"name":"2011 IEEE International Conference on Systems Biology (ISB)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Detecting coherent local patterns from time series gene expression data by a temporal biclustering method\",\"authors\":\"Jibin Qu, Xiang-Sun Zhang, Ling-Yun Wu, Yong Wang, Luonan Chen\",\"doi\":\"10.1109/ISB.2011.6033184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-series gene expression data analysis plays an important role in bioinformatics. In this paper, we propose a biclustering method to detect local expression patterns in time-series gene expression data by performing clustering on both gene and time dimensions. Our method aims to find gene subsets which show coherent expression profiles in some time subsets which have a consecutive order in a bicluster. Specifically, our temporal biclustering method is composed of a discretization procedure and a follow-up sequence alignment, which can identify similar local expression profiles and further reveal coherent local relations such as complementary and time-lagged coherence. We apply our method to yeast cell cycle data, and find several biologically important biclusters.\",\"PeriodicalId\":355056,\"journal\":{\"name\":\"2011 IEEE International Conference on Systems Biology (ISB)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Systems Biology (ISB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISB.2011.6033184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Systems Biology (ISB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISB.2011.6033184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detecting coherent local patterns from time series gene expression data by a temporal biclustering method
Time-series gene expression data analysis plays an important role in bioinformatics. In this paper, we propose a biclustering method to detect local expression patterns in time-series gene expression data by performing clustering on both gene and time dimensions. Our method aims to find gene subsets which show coherent expression profiles in some time subsets which have a consecutive order in a bicluster. Specifically, our temporal biclustering method is composed of a discretization procedure and a follow-up sequence alignment, which can identify similar local expression profiles and further reveal coherent local relations such as complementary and time-lagged coherence. We apply our method to yeast cell cycle data, and find several biologically important biclusters.