用时间双聚类方法从时间序列基因表达数据中检测相干局部模式

Jibin Qu, Xiang-Sun Zhang, Ling-Yun Wu, Yong Wang, Luonan Chen
{"title":"用时间双聚类方法从时间序列基因表达数据中检测相干局部模式","authors":"Jibin Qu, Xiang-Sun Zhang, Ling-Yun Wu, Yong Wang, Luonan Chen","doi":"10.1109/ISB.2011.6033184","DOIUrl":null,"url":null,"abstract":"Time-series gene expression data analysis plays an important role in bioinformatics. In this paper, we propose a biclustering method to detect local expression patterns in time-series gene expression data by performing clustering on both gene and time dimensions. Our method aims to find gene subsets which show coherent expression profiles in some time subsets which have a consecutive order in a bicluster. Specifically, our temporal biclustering method is composed of a discretization procedure and a follow-up sequence alignment, which can identify similar local expression profiles and further reveal coherent local relations such as complementary and time-lagged coherence. We apply our method to yeast cell cycle data, and find several biologically important biclusters.","PeriodicalId":355056,"journal":{"name":"2011 IEEE International Conference on Systems Biology (ISB)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Detecting coherent local patterns from time series gene expression data by a temporal biclustering method\",\"authors\":\"Jibin Qu, Xiang-Sun Zhang, Ling-Yun Wu, Yong Wang, Luonan Chen\",\"doi\":\"10.1109/ISB.2011.6033184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-series gene expression data analysis plays an important role in bioinformatics. In this paper, we propose a biclustering method to detect local expression patterns in time-series gene expression data by performing clustering on both gene and time dimensions. Our method aims to find gene subsets which show coherent expression profiles in some time subsets which have a consecutive order in a bicluster. Specifically, our temporal biclustering method is composed of a discretization procedure and a follow-up sequence alignment, which can identify similar local expression profiles and further reveal coherent local relations such as complementary and time-lagged coherence. We apply our method to yeast cell cycle data, and find several biologically important biclusters.\",\"PeriodicalId\":355056,\"journal\":{\"name\":\"2011 IEEE International Conference on Systems Biology (ISB)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Systems Biology (ISB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISB.2011.6033184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Systems Biology (ISB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISB.2011.6033184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

时序基因表达数据分析在生物信息学中具有重要作用。在本文中,我们提出了一种双聚类方法,通过在基因和时间维度上进行聚类来检测时间序列基因表达数据中的局部表达模式。我们的方法旨在寻找在双聚类中具有连续顺序的某些时间子集中显示一致表达谱的基因子集。具体而言,我们的时间双聚类方法由离散化过程和后续序列比对组成,可以识别相似的局部表达谱,并进一步揭示互补和滞后相干等相干局部关系。我们将我们的方法应用于酵母细胞周期数据,并发现了几个生物学上重要的双簇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting coherent local patterns from time series gene expression data by a temporal biclustering method
Time-series gene expression data analysis plays an important role in bioinformatics. In this paper, we propose a biclustering method to detect local expression patterns in time-series gene expression data by performing clustering on both gene and time dimensions. Our method aims to find gene subsets which show coherent expression profiles in some time subsets which have a consecutive order in a bicluster. Specifically, our temporal biclustering method is composed of a discretization procedure and a follow-up sequence alignment, which can identify similar local expression profiles and further reveal coherent local relations such as complementary and time-lagged coherence. We apply our method to yeast cell cycle data, and find several biologically important biclusters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信