结合案例推理和自组织地图的黄瓜枯萎病智能预测

Zhengang Yang, F. Deng, Weizhang Liu
{"title":"结合案例推理和自组织地图的黄瓜枯萎病智能预测","authors":"Zhengang Yang, F. Deng, Weizhang Liu","doi":"10.1109/ICNC.2007.449","DOIUrl":null,"url":null,"abstract":"Combining self-organizing maps (SOM) with case-based reasoning (CBR), a hybrid intelligent forecast method for CFW (cucumber fusarium wilt) is presented. Different from the traditional similar case retrieval, this method performs case classification with trained SOM network and then figures out a similar case set using a proposed case similarity metric. A classification accuracy of 97.22% was achieved by the integrated SOM network in the classification performance test. From CFW forecast experiments, the optimal interval of dissimilarity threshold R for this method is inferred. Comprehensive analysis shows that this hybrid forecast method can effectively provide reliable reasoning data for CFW forecast and assist decision-making of CFW prevention and treatment measures.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"7 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Forecast for Cucumber Fusarium Wilt Combining Case-based Reasoning With Self-organizing Maps\",\"authors\":\"Zhengang Yang, F. Deng, Weizhang Liu\",\"doi\":\"10.1109/ICNC.2007.449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combining self-organizing maps (SOM) with case-based reasoning (CBR), a hybrid intelligent forecast method for CFW (cucumber fusarium wilt) is presented. Different from the traditional similar case retrieval, this method performs case classification with trained SOM network and then figures out a similar case set using a proposed case similarity metric. A classification accuracy of 97.22% was achieved by the integrated SOM network in the classification performance test. From CFW forecast experiments, the optimal interval of dissimilarity threshold R for this method is inferred. Comprehensive analysis shows that this hybrid forecast method can effectively provide reliable reasoning data for CFW forecast and assist decision-making of CFW prevention and treatment measures.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"7 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将自组织映射(SOM)与基于案例推理(CBR)相结合,提出了一种黄瓜枯萎病的混合智能预测方法。与传统的相似案例检索不同,该方法使用训练好的SOM网络进行案例分类,然后使用提出的案例相似度度量来计算相似案例集。在分类性能测试中,集成SOM网络的分类准确率达到97.22%。从CFW预报实验中,推导出该方法的最优不相似阈值R区间。综合分析表明,该混合预报方法可有效地为CFW预报提供可靠的推理数据,辅助制定CFW防治措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Forecast for Cucumber Fusarium Wilt Combining Case-based Reasoning With Self-organizing Maps
Combining self-organizing maps (SOM) with case-based reasoning (CBR), a hybrid intelligent forecast method for CFW (cucumber fusarium wilt) is presented. Different from the traditional similar case retrieval, this method performs case classification with trained SOM network and then figures out a similar case set using a proposed case similarity metric. A classification accuracy of 97.22% was achieved by the integrated SOM network in the classification performance test. From CFW forecast experiments, the optimal interval of dissimilarity threshold R for this method is inferred. Comprehensive analysis shows that this hybrid forecast method can effectively provide reliable reasoning data for CFW forecast and assist decision-making of CFW prevention and treatment measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信