我们是根据我们发布的内容进行搜索,还是根据我们搜索的内容进行Tweet ?

Ayman Farahat, Bongwoh Suh
{"title":"我们是根据我们发布的内容进行搜索,还是根据我们搜索的内容进行Tweet ?","authors":"Ayman Farahat, Bongwoh Suh","doi":"10.2139/ssrn.2175316","DOIUrl":null,"url":null,"abstract":"We investigate the properties of Twitter and search using a vector auto-regressive model. The VAR has two advantages. First it allows us to jointly decompose the time series into a stationary trend and random shocks. We investigate the relation between the shocks to gain further insights into the correlation between the shocks. Second, using the VAR model we perform a Granger causality test to see whether one variable Granger causes the other. An important implication of Granger causality is that the lagged versions of one variables can help predict the other variable. We tested our models on daily Twitter and search data. We found that Twitter and search can simultaneously Granger cause each other, Twitter Granger causes search, and neither search nor Twitter Granger causes the other. When Granger causality holds, the VAR model reduces the standard deviation of the out-of-sample prediction error by over 37% when compared to the best univariate model.","PeriodicalId":369795,"journal":{"name":"Writing Technologies eJournal","volume":"391 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Do We Search on What We Tweet or Tweet on What We Search?\",\"authors\":\"Ayman Farahat, Bongwoh Suh\",\"doi\":\"10.2139/ssrn.2175316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the properties of Twitter and search using a vector auto-regressive model. The VAR has two advantages. First it allows us to jointly decompose the time series into a stationary trend and random shocks. We investigate the relation between the shocks to gain further insights into the correlation between the shocks. Second, using the VAR model we perform a Granger causality test to see whether one variable Granger causes the other. An important implication of Granger causality is that the lagged versions of one variables can help predict the other variable. We tested our models on daily Twitter and search data. We found that Twitter and search can simultaneously Granger cause each other, Twitter Granger causes search, and neither search nor Twitter Granger causes the other. When Granger causality holds, the VAR model reduces the standard deviation of the out-of-sample prediction error by over 37% when compared to the best univariate model.\",\"PeriodicalId\":369795,\"journal\":{\"name\":\"Writing Technologies eJournal\",\"volume\":\"391 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Writing Technologies eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2175316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Writing Technologies eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2175316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们使用向量自回归模型研究Twitter和搜索的属性。VAR有两个优势。首先,它允许我们将时间序列分解为平稳趋势和随机冲击。我们研究了冲击之间的关系,以进一步了解冲击之间的相关性。其次,我们使用VAR模型进行格兰杰因果检验,以确定一个变量是否格兰杰导致另一个变量。格兰杰因果关系的一个重要含义是,一个变量的滞后版本可以帮助预测另一个变量。我们在每日Twitter和搜索数据上测试了我们的模型。我们发现Twitter和搜索可以同时格兰杰导致彼此,Twitter格兰杰导致搜索,搜索和Twitter格兰杰都不导致对方。当格兰杰因果关系成立时,与最佳单变量模型相比,VAR模型将样本外预测误差的标准差降低了37%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Do We Search on What We Tweet or Tweet on What We Search?
We investigate the properties of Twitter and search using a vector auto-regressive model. The VAR has two advantages. First it allows us to jointly decompose the time series into a stationary trend and random shocks. We investigate the relation between the shocks to gain further insights into the correlation between the shocks. Second, using the VAR model we perform a Granger causality test to see whether one variable Granger causes the other. An important implication of Granger causality is that the lagged versions of one variables can help predict the other variable. We tested our models on daily Twitter and search data. We found that Twitter and search can simultaneously Granger cause each other, Twitter Granger causes search, and neither search nor Twitter Granger causes the other. When Granger causality holds, the VAR model reduces the standard deviation of the out-of-sample prediction error by over 37% when compared to the best univariate model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信