包传播和爱因斯坦延迟

M. I. Shirokov
{"title":"包传播和爱因斯坦延迟","authors":"M. I. Shirokov","doi":"10.2478/v10005-009-0012-3","DOIUrl":null,"url":null,"abstract":"According to the classical special theory of relativity any nonstationary system moving with velocityv must evolve (e.g., decay) 1/ times slower than the system at rest, = (1 v 2 ) 1/2 (the Einstein retardation ER). Quantum mechanics allows one to calculate the evolution of both systems separately and to compare them thus verifying ER. It is shown here that ER is not valid for a simple system: the spreading packet of the free spinless particle. Earlier it was shown that ER does not hold for some other systems. So one may state that ER is not a universal kinematic law in quantum mechanics.","PeriodicalId":249199,"journal":{"name":"Old and New Concepts of Physics","volume":"253 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PACKET SPREADING AND EINSTEIN RETARDATION\",\"authors\":\"M. I. Shirokov\",\"doi\":\"10.2478/v10005-009-0012-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the classical special theory of relativity any nonstationary system moving with velocityv must evolve (e.g., decay) 1/ times slower than the system at rest, = (1 v 2 ) 1/2 (the Einstein retardation ER). Quantum mechanics allows one to calculate the evolution of both systems separately and to compare them thus verifying ER. It is shown here that ER is not valid for a simple system: the spreading packet of the free spinless particle. Earlier it was shown that ER does not hold for some other systems. So one may state that ER is not a universal kinematic law in quantum mechanics.\",\"PeriodicalId\":249199,\"journal\":{\"name\":\"Old and New Concepts of Physics\",\"volume\":\"253 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Old and New Concepts of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/v10005-009-0012-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Old and New Concepts of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/v10005-009-0012-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

根据经典狭义相对论,任何以速度v运动的非平稳系统的演化(例如,衰变)必须比静止系统慢1/ 1倍,= (1 v 2) 1/2(爱因斯坦延迟ER)。量子力学允许人们分别计算两个系统的演化,并对它们进行比较,从而验证ER。本文表明,对于一个简单的系统,即自由无自旋粒子的扩散包,ER是不成立的。前面已经表明,ER不适用于其他一些系统。所以有人可能会说,ER不是量子力学中普遍的运动定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PACKET SPREADING AND EINSTEIN RETARDATION
According to the classical special theory of relativity any nonstationary system moving with velocityv must evolve (e.g., decay) 1/ times slower than the system at rest, = (1 v 2 ) 1/2 (the Einstein retardation ER). Quantum mechanics allows one to calculate the evolution of both systems separately and to compare them thus verifying ER. It is shown here that ER is not valid for a simple system: the spreading packet of the free spinless particle. Earlier it was shown that ER does not hold for some other systems. So one may state that ER is not a universal kinematic law in quantum mechanics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信