使用隐马尔可夫模型的自动手写手势识别

Jérôme Martin, Jean-Baptiste Durand
{"title":"使用隐马尔可夫模型的自动手写手势识别","authors":"Jérôme Martin, Jean-Baptiste Durand","doi":"10.1109/AFGR.2000.840666","DOIUrl":null,"url":null,"abstract":"Hidden Markov models have been successfully employed in speech recognition and, more recently, in sign language interpretation. They seem adequate for visual recognition of gestures. In this paper, two problems often eluded are considered. We propose to use the Bayesian information criterion in order to determine the optimal number of model states. We describe the contribution of continuous models in opposition to symbolic ones. Experiments on handwriting gestures show recognition rate between 88% and 100%.","PeriodicalId":360065,"journal":{"name":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Automatic handwriting gestures recognition using hidden Markov models\",\"authors\":\"Jérôme Martin, Jean-Baptiste Durand\",\"doi\":\"10.1109/AFGR.2000.840666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hidden Markov models have been successfully employed in speech recognition and, more recently, in sign language interpretation. They seem adequate for visual recognition of gestures. In this paper, two problems often eluded are considered. We propose to use the Bayesian information criterion in order to determine the optimal number of model states. We describe the contribution of continuous models in opposition to symbolic ones. Experiments on handwriting gestures show recognition rate between 88% and 100%.\",\"PeriodicalId\":360065,\"journal\":{\"name\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AFGR.2000.840666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFGR.2000.840666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

隐马尔可夫模型已经成功地应用于语音识别,最近又应用于手语解释。它们似乎足以对手势进行视觉识别。本文考虑了两个常被忽略的问题。我们建议使用贝叶斯信息准则来确定模型状态的最优数量。我们描述了连续模型对符号模型的贡献。手写手势的实验表明识别率在88%到100%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic handwriting gestures recognition using hidden Markov models
Hidden Markov models have been successfully employed in speech recognition and, more recently, in sign language interpretation. They seem adequate for visual recognition of gestures. In this paper, two problems often eluded are considered. We propose to use the Bayesian information criterion in order to determine the optimal number of model states. We describe the contribution of continuous models in opposition to symbolic ones. Experiments on handwriting gestures show recognition rate between 88% and 100%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信