{"title":"使用隐马尔可夫模型的自动手写手势识别","authors":"Jérôme Martin, Jean-Baptiste Durand","doi":"10.1109/AFGR.2000.840666","DOIUrl":null,"url":null,"abstract":"Hidden Markov models have been successfully employed in speech recognition and, more recently, in sign language interpretation. They seem adequate for visual recognition of gestures. In this paper, two problems often eluded are considered. We propose to use the Bayesian information criterion in order to determine the optimal number of model states. We describe the contribution of continuous models in opposition to symbolic ones. Experiments on handwriting gestures show recognition rate between 88% and 100%.","PeriodicalId":360065,"journal":{"name":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Automatic handwriting gestures recognition using hidden Markov models\",\"authors\":\"Jérôme Martin, Jean-Baptiste Durand\",\"doi\":\"10.1109/AFGR.2000.840666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hidden Markov models have been successfully employed in speech recognition and, more recently, in sign language interpretation. They seem adequate for visual recognition of gestures. In this paper, two problems often eluded are considered. We propose to use the Bayesian information criterion in order to determine the optimal number of model states. We describe the contribution of continuous models in opposition to symbolic ones. Experiments on handwriting gestures show recognition rate between 88% and 100%.\",\"PeriodicalId\":360065,\"journal\":{\"name\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AFGR.2000.840666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFGR.2000.840666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic handwriting gestures recognition using hidden Markov models
Hidden Markov models have been successfully employed in speech recognition and, more recently, in sign language interpretation. They seem adequate for visual recognition of gestures. In this paper, two problems often eluded are considered. We propose to use the Bayesian information criterion in order to determine the optimal number of model states. We describe the contribution of continuous models in opposition to symbolic ones. Experiments on handwriting gestures show recognition rate between 88% and 100%.