基于SVM分类器的水下鱼类特征识别

Sunil Kumar, Umagowri Ms, Elangovan Mr
{"title":"基于SVM分类器的水下鱼类特征识别","authors":"Sunil Kumar, Umagowri Ms, Elangovan Mr","doi":"10.20894/ijdmta.102.007.001.011","DOIUrl":null,"url":null,"abstract":"An approach for underwater fish recognition based on wavelet transform is presented in this paper. This approach decomposes the input image into sub-bands by using the multi resolutional analysis known as Discrete Wavelet Transform (DWT). As each sub-band in the decomposed image contains useful information about the image, the mean values of every sub-band are assumed as features. This approach is tested on Underwater Photography - A Fish Database. The database contains 7953 pictures of 1458 different species. The database is considered for the classification based on Support Vector machine (SVM) classifier. The result shows that maximum recognition accuracy of 90.74% is achieved by the wavelet features.","PeriodicalId":414709,"journal":{"name":"International Journal of Data Mining Techniques and Applications","volume":"19 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature Based Underwater Fish Recognition Using SVM Classifier\",\"authors\":\"Sunil Kumar, Umagowri Ms, Elangovan Mr\",\"doi\":\"10.20894/ijdmta.102.007.001.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An approach for underwater fish recognition based on wavelet transform is presented in this paper. This approach decomposes the input image into sub-bands by using the multi resolutional analysis known as Discrete Wavelet Transform (DWT). As each sub-band in the decomposed image contains useful information about the image, the mean values of every sub-band are assumed as features. This approach is tested on Underwater Photography - A Fish Database. The database contains 7953 pictures of 1458 different species. The database is considered for the classification based on Support Vector machine (SVM) classifier. The result shows that maximum recognition accuracy of 90.74% is achieved by the wavelet features.\",\"PeriodicalId\":414709,\"journal\":{\"name\":\"International Journal of Data Mining Techniques and Applications\",\"volume\":\"19 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20894/ijdmta.102.007.001.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20894/ijdmta.102.007.001.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于小波变换的水下鱼类识别方法。该方法通过使用称为离散小波变换(DWT)的多分辨率分析将输入图像分解成子带。由于分解后的图像中每个子带都包含了图像的有用信息,所以假设每个子带的均值为特征。这种方法在水下摄影-鱼类数据库上进行了测试。该数据库包含1458个不同物种的7953张图片。在数据库中考虑基于支持向量机分类器的分类。结果表明,小波特征的识别准确率最高可达90.74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Based Underwater Fish Recognition Using SVM Classifier
An approach for underwater fish recognition based on wavelet transform is presented in this paper. This approach decomposes the input image into sub-bands by using the multi resolutional analysis known as Discrete Wavelet Transform (DWT). As each sub-band in the decomposed image contains useful information about the image, the mean values of every sub-band are assumed as features. This approach is tested on Underwater Photography - A Fish Database. The database contains 7953 pictures of 1458 different species. The database is considered for the classification based on Support Vector machine (SVM) classifier. The result shows that maximum recognition accuracy of 90.74% is achieved by the wavelet features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信