大规模室内环境下的图像匹配

Hongwen Kang, Alexei A. Efros, M. Hebert, T. Kanade
{"title":"大规模室内环境下的图像匹配","authors":"Hongwen Kang, Alexei A. Efros, M. Hebert, T. Kanade","doi":"10.1109/CVPRW.2009.5204357","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a data driven approach to first-person vision. We propose a novel image matching algorithm, named Re-Search, that is designed to cope with self-repetitive structures and confusing patterns in the indoor environment. This algorithm uses state-of-art image search techniques, and it matches a query image with a two-pass strategy. In the first pass, a conventional image search algorithm is used to search for a small number of images that are most similar to the query image. In the second pass, the retrieval results from the first step are used to discover features that are more distinctive in the local context. We demonstrate and evaluate the Re-Search algorithm in the context of indoor localization, with the illustration of potential applications in object pop-out and data-driven zoom-in.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Image matching in large scale indoor environment\",\"authors\":\"Hongwen Kang, Alexei A. Efros, M. Hebert, T. Kanade\",\"doi\":\"10.1109/CVPRW.2009.5204357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a data driven approach to first-person vision. We propose a novel image matching algorithm, named Re-Search, that is designed to cope with self-repetitive structures and confusing patterns in the indoor environment. This algorithm uses state-of-art image search techniques, and it matches a query image with a two-pass strategy. In the first pass, a conventional image search algorithm is used to search for a small number of images that are most similar to the query image. In the second pass, the retrieval results from the first step are used to discover features that are more distinctive in the local context. We demonstrate and evaluate the Re-Search algorithm in the context of indoor localization, with the illustration of potential applications in object pop-out and data-driven zoom-in.\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2009.5204357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

在本文中,我们提出了一种数据驱动的方法来实现第一人称视觉。我们提出了一种新的图像匹配算法,名为Re-Search,旨在处理室内环境中自我重复的结构和混乱的模式。该算法采用了最先进的图像搜索技术,并采用两次匹配策略对查询图像进行匹配。在第一遍中,使用传统的图像搜索算法搜索与查询图像最相似的少量图像。在第二步中,使用第一步的检索结果来发现在局部上下文中更独特的特征。我们在室内定位的背景下演示和评估了Re-Search算法,并举例说明了物体弹出和数据驱动放大的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image matching in large scale indoor environment
In this paper, we propose a data driven approach to first-person vision. We propose a novel image matching algorithm, named Re-Search, that is designed to cope with self-repetitive structures and confusing patterns in the indoor environment. This algorithm uses state-of-art image search techniques, and it matches a query image with a two-pass strategy. In the first pass, a conventional image search algorithm is used to search for a small number of images that are most similar to the query image. In the second pass, the retrieval results from the first step are used to discover features that are more distinctive in the local context. We demonstrate and evaluate the Re-Search algorithm in the context of indoor localization, with the illustration of potential applications in object pop-out and data-driven zoom-in.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信