基于k均值聚类的精细SAR图像分割算法

Tao Xing, Qingrong Hu, Jun Li, Guanyong Wang
{"title":"基于k均值聚类的精细SAR图像分割算法","authors":"Tao Xing, Qingrong Hu, Jun Li, Guanyong Wang","doi":"10.1109/RADAR.2016.8059487","DOIUrl":null,"url":null,"abstract":"Study on SAR image segmentation based on K-means clustering. Analyzes and refined the adaptive moving K-means clustering algorithm by refined the adaptation degree function computation method which dividing the raw adaptation degree function by a direct ratio function of the sample number in clustering and presenting a new sample point separating rule on the clustering area which has the largest adaptation degree function. Millimeter SAR image segment results verify that the refined algorithm have better quality than K-means clustering algorithms in paper for city, road and bridge. Refined K-means clustering algorithm are more efficiency than the adaptive moving K-means clustering algorithm.","PeriodicalId":245387,"journal":{"name":"2016 CIE International Conference on Radar (RADAR)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Refined SAR image segmentation algorithm based on K-means clustering\",\"authors\":\"Tao Xing, Qingrong Hu, Jun Li, Guanyong Wang\",\"doi\":\"10.1109/RADAR.2016.8059487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Study on SAR image segmentation based on K-means clustering. Analyzes and refined the adaptive moving K-means clustering algorithm by refined the adaptation degree function computation method which dividing the raw adaptation degree function by a direct ratio function of the sample number in clustering and presenting a new sample point separating rule on the clustering area which has the largest adaptation degree function. Millimeter SAR image segment results verify that the refined algorithm have better quality than K-means clustering algorithms in paper for city, road and bridge. Refined K-means clustering algorithm are more efficiency than the adaptive moving K-means clustering algorithm.\",\"PeriodicalId\":245387,\"journal\":{\"name\":\"2016 CIE International Conference on Radar (RADAR)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 CIE International Conference on Radar (RADAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2016.8059487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 CIE International Conference on Radar (RADAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2016.8059487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基于k均值聚类的SAR图像分割研究。对自适应移动k均值聚类算法进行了分析和改进,改进了自适应度函数计算方法,将原始自适应度函数除以聚类中样本数的正比函数,在自适应度函数最大的聚类区域上给出了新的样本点分离规则。对城市、道路和桥梁的毫米波SAR图像分割结果验证了改进算法比论文中的k均值聚类算法具有更好的质量。改进的k -均值聚类算法比自适应移动k -均值聚类算法效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refined SAR image segmentation algorithm based on K-means clustering
Study on SAR image segmentation based on K-means clustering. Analyzes and refined the adaptive moving K-means clustering algorithm by refined the adaptation degree function computation method which dividing the raw adaptation degree function by a direct ratio function of the sample number in clustering and presenting a new sample point separating rule on the clustering area which has the largest adaptation degree function. Millimeter SAR image segment results verify that the refined algorithm have better quality than K-means clustering algorithms in paper for city, road and bridge. Refined K-means clustering algorithm are more efficiency than the adaptive moving K-means clustering algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信