ICNRL:面向信息中心网络表示的主动框架

Yuming Lu, Weichao Li, Xiaojun Wang
{"title":"ICNRL:面向信息中心网络表示的主动框架","authors":"Yuming Lu, Weichao Li, Xiaojun Wang","doi":"10.1109/HOTICN.2018.8605940","DOIUrl":null,"url":null,"abstract":"The exponentially growing demand for computational resources prevents the Information Centric Networking (ICN) being deployed in practice due to the high dimensional sparse data computation. However, we argue that Network Representation Learning (NRL) can help to solve the problem by transforming the raw network information data into low-dimensional dense adjacency matrix representation. In this paper, we propose ICNRL, a novel task-based NRL scheme for ICN. Based on the adjacency matrix generated by NRL, ICNRL can calculate the index threshold value to support the networking decision making of content-store (CS), pending information table (PIT), and forwarding information base (FIB), and therefore improves the management and processing capabilities of ICN.","PeriodicalId":243749,"journal":{"name":"2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN)","volume":"15 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ICNRL: An Initiative Framework Towards Information Centric Network Representation\",\"authors\":\"Yuming Lu, Weichao Li, Xiaojun Wang\",\"doi\":\"10.1109/HOTICN.2018.8605940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exponentially growing demand for computational resources prevents the Information Centric Networking (ICN) being deployed in practice due to the high dimensional sparse data computation. However, we argue that Network Representation Learning (NRL) can help to solve the problem by transforming the raw network information data into low-dimensional dense adjacency matrix representation. In this paper, we propose ICNRL, a novel task-based NRL scheme for ICN. Based on the adjacency matrix generated by NRL, ICNRL can calculate the index threshold value to support the networking decision making of content-store (CS), pending information table (PIT), and forwarding information base (FIB), and therefore improves the management and processing capabilities of ICN.\",\"PeriodicalId\":243749,\"journal\":{\"name\":\"2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN)\",\"volume\":\"15 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOTICN.2018.8605940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOTICN.2018.8605940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对计算资源的需求呈指数级增长,使得信息中心网络(ICN)由于其高维稀疏数据计算而无法在实际应用中部署。然而,我们认为网络表示学习(NRL)可以通过将原始网络信息数据转换为低维密集邻接矩阵表示来帮助解决问题。在本文中,我们提出了一种新的基于任务的ICNRL方案。基于NRL生成的邻接矩阵,ICNRL可以计算出索引阈值,支持内容库(content-store, CS)、暂存信息表(pending information table, PIT)和转发信息库(forwarding information base, FIB)的组网决策,从而提高ICN的管理和处理能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ICNRL: An Initiative Framework Towards Information Centric Network Representation
The exponentially growing demand for computational resources prevents the Information Centric Networking (ICN) being deployed in practice due to the high dimensional sparse data computation. However, we argue that Network Representation Learning (NRL) can help to solve the problem by transforming the raw network information data into low-dimensional dense adjacency matrix representation. In this paper, we propose ICNRL, a novel task-based NRL scheme for ICN. Based on the adjacency matrix generated by NRL, ICNRL can calculate the index threshold value to support the networking decision making of content-store (CS), pending information table (PIT), and forwarding information base (FIB), and therefore improves the management and processing capabilities of ICN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信