A. Razak, A. Nasir, N. Ghani, Nurul Amira Mhd Rizal, M. Jusof, Ikhwan Hafiz Muhamad
{"title":"摆系统控制设计中的多目标藤壶匹配优化","authors":"A. Razak, A. Nasir, N. Ghani, Nurul Amira Mhd Rizal, M. Jusof, Ikhwan Hafiz Muhamad","doi":"10.1109/ETCCE51779.2020.9350881","DOIUrl":null,"url":null,"abstract":"This paper presents a MultiObjective Barnacle Mating Optimization (MOBMO) and its application to optimize controller parameters for an inverted pendulum system. The algorithm is an extended version of a single-objective Barnacle Mating Optimization (BMO). In terms of solving a complex problem that has two conflicting objectives, a multiobjective type BMO is needed. Therefore, in the proposed MOBMO, nondominated sorting and crowding distance approaches are incorporated into BMO as a technique to formulate the multiobjective algorithm. The proposed algorithm is tested on various multiobjective benchmark functions. Its performance in terms of accuracy and diversity attainment to find a theoretical pareto front solution is analyzed. Moreover the proposed MOBMO is applied to optimize control parameters for PD controls of a pendulum system. The performance of the proposed MOBMO is compared with Multiobjective Water Cycle Algorithm (MOWCA). Result of the benchmark functions test shows that the proposed algorithm has attained a higher accuracy and a competitive diversity in locating the theoretical front solution. For its application to optimize PD control parameters, both MOWCA and MOBMO have successfully attained a good pareto front solution and controlled the pendulum sufficiently good. Overall performance, the proposed MOBMO has outperformed MOWCA for accuracy attainment and achieved the same level of diversity performance.","PeriodicalId":234459,"journal":{"name":"2020 Emerging Technology in Computing, Communication and Electronics (ETCCE)","volume":"1 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi Objective Barnacle Mating Optimization for Control Design of a Pendulum System\",\"authors\":\"A. Razak, A. Nasir, N. Ghani, Nurul Amira Mhd Rizal, M. Jusof, Ikhwan Hafiz Muhamad\",\"doi\":\"10.1109/ETCCE51779.2020.9350881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a MultiObjective Barnacle Mating Optimization (MOBMO) and its application to optimize controller parameters for an inverted pendulum system. The algorithm is an extended version of a single-objective Barnacle Mating Optimization (BMO). In terms of solving a complex problem that has two conflicting objectives, a multiobjective type BMO is needed. Therefore, in the proposed MOBMO, nondominated sorting and crowding distance approaches are incorporated into BMO as a technique to formulate the multiobjective algorithm. The proposed algorithm is tested on various multiobjective benchmark functions. Its performance in terms of accuracy and diversity attainment to find a theoretical pareto front solution is analyzed. Moreover the proposed MOBMO is applied to optimize control parameters for PD controls of a pendulum system. The performance of the proposed MOBMO is compared with Multiobjective Water Cycle Algorithm (MOWCA). Result of the benchmark functions test shows that the proposed algorithm has attained a higher accuracy and a competitive diversity in locating the theoretical front solution. For its application to optimize PD control parameters, both MOWCA and MOBMO have successfully attained a good pareto front solution and controlled the pendulum sufficiently good. Overall performance, the proposed MOBMO has outperformed MOWCA for accuracy attainment and achieved the same level of diversity performance.\",\"PeriodicalId\":234459,\"journal\":{\"name\":\"2020 Emerging Technology in Computing, Communication and Electronics (ETCCE)\",\"volume\":\"1 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Emerging Technology in Computing, Communication and Electronics (ETCCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETCCE51779.2020.9350881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Emerging Technology in Computing, Communication and Electronics (ETCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCCE51779.2020.9350881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi Objective Barnacle Mating Optimization for Control Design of a Pendulum System
This paper presents a MultiObjective Barnacle Mating Optimization (MOBMO) and its application to optimize controller parameters for an inverted pendulum system. The algorithm is an extended version of a single-objective Barnacle Mating Optimization (BMO). In terms of solving a complex problem that has two conflicting objectives, a multiobjective type BMO is needed. Therefore, in the proposed MOBMO, nondominated sorting and crowding distance approaches are incorporated into BMO as a technique to formulate the multiobjective algorithm. The proposed algorithm is tested on various multiobjective benchmark functions. Its performance in terms of accuracy and diversity attainment to find a theoretical pareto front solution is analyzed. Moreover the proposed MOBMO is applied to optimize control parameters for PD controls of a pendulum system. The performance of the proposed MOBMO is compared with Multiobjective Water Cycle Algorithm (MOWCA). Result of the benchmark functions test shows that the proposed algorithm has attained a higher accuracy and a competitive diversity in locating the theoretical front solution. For its application to optimize PD control parameters, both MOWCA and MOBMO have successfully attained a good pareto front solution and controlled the pendulum sufficiently good. Overall performance, the proposed MOBMO has outperformed MOWCA for accuracy attainment and achieved the same level of diversity performance.