Sobhan Niknam, Yixian Shen, A. Pathania, Andy D. Pimentel
{"title":"3D-TTP: 3d堆叠处理器-存储器系统的有效瞬态温度感知功率预算","authors":"Sobhan Niknam, Yixian Shen, A. Pathania, Andy D. Pimentel","doi":"10.1109/ISVLSI59464.2023.10238664","DOIUrl":null,"url":null,"abstract":"The heat produced during computation severely limits the performance of multi-/many-core processors. High-performance 3D-stacked processor-memory systems stack cores and main memory on a single die. However, 3D-stacked systems suffer more severe thermal issues than their non-stacked planar 2D counterparts. Consequently, the aggressive thermal throttling required for their thermally-safe operation limits the potential performance gains. Power budgeting is an effective thermal management technique that prevents thermal throttling in multi-/many-core processors by assigning a thermally-safe power budget to cores within the processors. State-of-the-art power budgeting techniques for 2D processors do not account for the vertical thermal coupling between the layers of the 3D-stacked system and will fail to prevent thermal throttling in them. Furthermore, estimating thermals for a 3D-stacked processor with power budgeting requires a finer-grained RC thermal model than non-stacked processors. This requirement inhibits the porting of existing power budgeting solutions for 2D processors to 3D-stacked processor-memory systems. This work is the first to present the linear algebra-based algorithmic time-invariant transformations required to enable power budgeting in 3D-stacked systems. Based on the transformations, we propose the first transient-temperature-aware power budgeting technique, 3D-TTP, for 3D-stacked systems. Detailed interval thermal simulations with the advanced CoMeT simulator designed for 3D-stacked systems also confirm no thermal violations with our 3D-TTP technique. 3D-TTP exhibits an average 11.41% speedup over the state-of-the-art reactive-based thermal management technique.","PeriodicalId":199371,"journal":{"name":"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"47 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"3D-TTP: Efficient Transient Temperature-Aware Power Budgeting for 3D-Stacked Processor-Memory Systems\",\"authors\":\"Sobhan Niknam, Yixian Shen, A. Pathania, Andy D. Pimentel\",\"doi\":\"10.1109/ISVLSI59464.2023.10238664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heat produced during computation severely limits the performance of multi-/many-core processors. High-performance 3D-stacked processor-memory systems stack cores and main memory on a single die. However, 3D-stacked systems suffer more severe thermal issues than their non-stacked planar 2D counterparts. Consequently, the aggressive thermal throttling required for their thermally-safe operation limits the potential performance gains. Power budgeting is an effective thermal management technique that prevents thermal throttling in multi-/many-core processors by assigning a thermally-safe power budget to cores within the processors. State-of-the-art power budgeting techniques for 2D processors do not account for the vertical thermal coupling between the layers of the 3D-stacked system and will fail to prevent thermal throttling in them. Furthermore, estimating thermals for a 3D-stacked processor with power budgeting requires a finer-grained RC thermal model than non-stacked processors. This requirement inhibits the porting of existing power budgeting solutions for 2D processors to 3D-stacked processor-memory systems. This work is the first to present the linear algebra-based algorithmic time-invariant transformations required to enable power budgeting in 3D-stacked systems. Based on the transformations, we propose the first transient-temperature-aware power budgeting technique, 3D-TTP, for 3D-stacked systems. Detailed interval thermal simulations with the advanced CoMeT simulator designed for 3D-stacked systems also confirm no thermal violations with our 3D-TTP technique. 3D-TTP exhibits an average 11.41% speedup over the state-of-the-art reactive-based thermal management technique.\",\"PeriodicalId\":199371,\"journal\":{\"name\":\"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"47 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI59464.2023.10238664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI59464.2023.10238664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D-TTP: Efficient Transient Temperature-Aware Power Budgeting for 3D-Stacked Processor-Memory Systems
The heat produced during computation severely limits the performance of multi-/many-core processors. High-performance 3D-stacked processor-memory systems stack cores and main memory on a single die. However, 3D-stacked systems suffer more severe thermal issues than their non-stacked planar 2D counterparts. Consequently, the aggressive thermal throttling required for their thermally-safe operation limits the potential performance gains. Power budgeting is an effective thermal management technique that prevents thermal throttling in multi-/many-core processors by assigning a thermally-safe power budget to cores within the processors. State-of-the-art power budgeting techniques for 2D processors do not account for the vertical thermal coupling between the layers of the 3D-stacked system and will fail to prevent thermal throttling in them. Furthermore, estimating thermals for a 3D-stacked processor with power budgeting requires a finer-grained RC thermal model than non-stacked processors. This requirement inhibits the porting of existing power budgeting solutions for 2D processors to 3D-stacked processor-memory systems. This work is the first to present the linear algebra-based algorithmic time-invariant transformations required to enable power budgeting in 3D-stacked systems. Based on the transformations, we propose the first transient-temperature-aware power budgeting technique, 3D-TTP, for 3D-stacked systems. Detailed interval thermal simulations with the advanced CoMeT simulator designed for 3D-stacked systems also confirm no thermal violations with our 3D-TTP technique. 3D-TTP exhibits an average 11.41% speedup over the state-of-the-art reactive-based thermal management technique.