从正射影中没有对应点的运动估计

Dmitry B. Goldgof, T. S. Huang, H. Lee
{"title":"从正射影中没有对应点的运动估计","authors":"Dmitry B. Goldgof, T. S. Huang, H. Lee","doi":"10.1109/WVM.1989.47129","DOIUrl":null,"url":null,"abstract":"The authors present a novel algorithm for recovering motion parameters of the 3D point sets given point coordinates in three orthographic projections before and after motion. The algorithm requires no correspondences between two time instants and only a few correspondences in projections at the second time instant. The 3S scatter matrix of the 3D sets is calculated from 2D scatter matrices of projections. The algorithm uses matrix-eigendecomposition of the 3D scatter matrix to determine four candidate solutions for the rotation matrix.<<ETX>>","PeriodicalId":342419,"journal":{"name":"[1989] Proceedings. Workshop on Visual Motion","volume":"8 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Motion estimation from points without correspondences from orthographic projections\",\"authors\":\"Dmitry B. Goldgof, T. S. Huang, H. Lee\",\"doi\":\"10.1109/WVM.1989.47129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors present a novel algorithm for recovering motion parameters of the 3D point sets given point coordinates in three orthographic projections before and after motion. The algorithm requires no correspondences between two time instants and only a few correspondences in projections at the second time instant. The 3S scatter matrix of the 3D sets is calculated from 2D scatter matrices of projections. The algorithm uses matrix-eigendecomposition of the 3D scatter matrix to determine four candidate solutions for the rotation matrix.<<ETX>>\",\"PeriodicalId\":342419,\"journal\":{\"name\":\"[1989] Proceedings. Workshop on Visual Motion\",\"volume\":\"8 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1989] Proceedings. Workshop on Visual Motion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WVM.1989.47129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1989] Proceedings. Workshop on Visual Motion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WVM.1989.47129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种恢复三维点集运动参数的新算法,该算法在运动前后的三个正射影中给定点坐标。该算法不需要两个时间瞬间的对应关系,只需要在第二个时间瞬间的投影中有少量对应关系。3D集合的3S散点矩阵由投影的2D散点矩阵计算得到。该算法使用三维散点矩阵的矩阵特征分解来确定旋转矩阵的四个候选解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion estimation from points without correspondences from orthographic projections
The authors present a novel algorithm for recovering motion parameters of the 3D point sets given point coordinates in three orthographic projections before and after motion. The algorithm requires no correspondences between two time instants and only a few correspondences in projections at the second time instant. The 3S scatter matrix of the 3D sets is calculated from 2D scatter matrices of projections. The algorithm uses matrix-eigendecomposition of the 3D scatter matrix to determine four candidate solutions for the rotation matrix.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信