毫米波MIMO结构的残差学习网络GM-LAMP

S. k, P. T, Sajan P Phihlip, L. M, Poongodi C
{"title":"毫米波MIMO结构的残差学习网络GM-LAMP","authors":"S. k, P. T, Sajan P Phihlip, L. M, Poongodi C","doi":"10.1109/STCR55312.2022.10009163","DOIUrl":null,"url":null,"abstract":"Gaussian Mixture Learned Approximate Message Passing with Residual Learning Network (GM-LAMP ResNet) for Millimeter-Wave (mmWave) Massive Multiple-Input Multiple Output (MIMO) system is presented. In mmWave systems, channels are sparse in nature. The increased sparsity in mmWave massive MIMO system, increases computation in Orthogonal Matching Pursuit (OMP) and cannot achieve high estimation accuracy. The gap between OMP scheme and Simultaneously OMP (SOMP) is filled by usage of classical iterative algorithm, which gives low computational complexity. Approximate Message Passing (AMP) algorithm, along equivalent version named as learned AMP (LAMP), are realized by Deep Neural Network (DNN). But algorithms in use are not provided with lower estimation error and higher achievable rates. To improve the higher achievable rates and low estimation error, GM-LAMP with ResNet is used to find the channel estimation. The proposed algorithm attain low computational complexity compared to the existing algorithms.","PeriodicalId":338691,"journal":{"name":"2022 Smart Technologies, Communication and Robotics (STCR)","volume":"2 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GM-LAMP with Residual Learning Network for Millimetre Wave MIMO Architectures\",\"authors\":\"S. k, P. T, Sajan P Phihlip, L. M, Poongodi C\",\"doi\":\"10.1109/STCR55312.2022.10009163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaussian Mixture Learned Approximate Message Passing with Residual Learning Network (GM-LAMP ResNet) for Millimeter-Wave (mmWave) Massive Multiple-Input Multiple Output (MIMO) system is presented. In mmWave systems, channels are sparse in nature. The increased sparsity in mmWave massive MIMO system, increases computation in Orthogonal Matching Pursuit (OMP) and cannot achieve high estimation accuracy. The gap between OMP scheme and Simultaneously OMP (SOMP) is filled by usage of classical iterative algorithm, which gives low computational complexity. Approximate Message Passing (AMP) algorithm, along equivalent version named as learned AMP (LAMP), are realized by Deep Neural Network (DNN). But algorithms in use are not provided with lower estimation error and higher achievable rates. To improve the higher achievable rates and low estimation error, GM-LAMP with ResNet is used to find the channel estimation. The proposed algorithm attain low computational complexity compared to the existing algorithms.\",\"PeriodicalId\":338691,\"journal\":{\"name\":\"2022 Smart Technologies, Communication and Robotics (STCR)\",\"volume\":\"2 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Smart Technologies, Communication and Robotics (STCR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STCR55312.2022.10009163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Smart Technologies, Communication and Robotics (STCR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STCR55312.2022.10009163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对毫米波(mmWave)大规模多输入多输出(MIMO)系统,提出了基于残差学习网络的高斯混合学习近似消息传递方法(GM-LAMP ResNet)。在毫米波系统中,信道本质上是稀疏的。在毫米波大规模MIMO系统中,稀疏性增加,增加了正交匹配跟踪(OMP)的计算量,无法达到较高的估计精度。利用经典迭代算法填补了OMP方案与同步OMP (SOMP)方案之间的空白,具有较低的计算复杂度。近似消息传递(AMP)算法及其等效版本称为学习消息传递(LAMP),是由深度神经网络(DNN)实现的。但是目前使用的算法并没有提供较低的估计误差和较高的可实现率。为了提高可达率和降低估计误差,采用带ResNet的GM-LAMP进行信道估计。与现有算法相比,该算法具有较低的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GM-LAMP with Residual Learning Network for Millimetre Wave MIMO Architectures
Gaussian Mixture Learned Approximate Message Passing with Residual Learning Network (GM-LAMP ResNet) for Millimeter-Wave (mmWave) Massive Multiple-Input Multiple Output (MIMO) system is presented. In mmWave systems, channels are sparse in nature. The increased sparsity in mmWave massive MIMO system, increases computation in Orthogonal Matching Pursuit (OMP) and cannot achieve high estimation accuracy. The gap between OMP scheme and Simultaneously OMP (SOMP) is filled by usage of classical iterative algorithm, which gives low computational complexity. Approximate Message Passing (AMP) algorithm, along equivalent version named as learned AMP (LAMP), are realized by Deep Neural Network (DNN). But algorithms in use are not provided with lower estimation error and higher achievable rates. To improve the higher achievable rates and low estimation error, GM-LAMP with ResNet is used to find the channel estimation. The proposed algorithm attain low computational complexity compared to the existing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信