分类中缺失特征问题的贝叶斯方法

R. Lynch, P. K. Willett
{"title":"分类中缺失特征问题的贝叶斯方法","authors":"R. Lynch, P. K. Willett","doi":"10.1109/CDC.1999.827922","DOIUrl":null,"url":null,"abstract":"In this paper, the Bayesian data reduction algorithm (BDRA) is extended to classify discrete test observations given the training data contains feature vectors which are missing values. Two methods are used to model missing features in the BDRA, where performance is compared to a neural network using both simulated and real data. In general, it is shown that the BDRA is superior to the neural network.","PeriodicalId":137513,"journal":{"name":"Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)","volume":"4 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Bayesian approach to the missing features problem in classification\",\"authors\":\"R. Lynch, P. K. Willett\",\"doi\":\"10.1109/CDC.1999.827922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the Bayesian data reduction algorithm (BDRA) is extended to classify discrete test observations given the training data contains feature vectors which are missing values. Two methods are used to model missing features in the BDRA, where performance is compared to a neural network using both simulated and real data. In general, it is shown that the BDRA is superior to the neural network.\",\"PeriodicalId\":137513,\"journal\":{\"name\":\"Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)\",\"volume\":\"4 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1999.827922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1999.827922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将贝叶斯数据约简算法(BDRA)扩展到训练数据中包含缺失值特征向量的离散测试观测值分类。使用两种方法对BDRA中的缺失特征进行建模,其中使用模拟和真实数据将性能与神经网络进行比较。总的来说,BDRA优于神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian approach to the missing features problem in classification
In this paper, the Bayesian data reduction algorithm (BDRA) is extended to classify discrete test observations given the training data contains feature vectors which are missing values. Two methods are used to model missing features in the BDRA, where performance is compared to a neural network using both simulated and real data. In general, it is shown that the BDRA is superior to the neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信