基于样本点空间邻域的点云快速细化算法

Jiaxing Wei, Maolin Xu, Hongling Xiu
{"title":"基于样本点空间邻域的点云快速细化算法","authors":"Jiaxing Wei, Maolin Xu, Hongling Xiu","doi":"10.3745/JIPS.01.0057","DOIUrl":null,"url":null,"abstract":"Point clouds have ability to express the spatial entities, however, the point clouds redundancy always involves some uncertainties in computer recognition and model construction. Therefore, point clouds thinning is an indispensable step in point clouds model reconstruction and other applications. To overcome the shortcomings of complex classification index and long time consuming in existing point clouds thinning algorithms, this paper proposes a point clouds fast thinning algorithm. Specifically, the two-dimensional index is established in plane linear array (x, y) for the scanned point clouds, and the thresholds of adjacent point distance difference and height difference are employed to further delete or retain the selected sample point. Sequentially, the index of sample point is traversed forwardly and backwardly until the process of point clouds thinning is completed. The results suggest that the proposed new algorithm can be applied to different targets when the thresholds are built in advance. Besides, the new method also performs superiority in time consuming, modelling accuracy and feature retention by comparing with octree thinning algorithm.","PeriodicalId":415161,"journal":{"name":"J. Inf. Process. Syst.","volume":"15 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Point Clouds Fast Thinning Algorithm Based on Sample Point Spatial Neighborhood\",\"authors\":\"Jiaxing Wei, Maolin Xu, Hongling Xiu\",\"doi\":\"10.3745/JIPS.01.0057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Point clouds have ability to express the spatial entities, however, the point clouds redundancy always involves some uncertainties in computer recognition and model construction. Therefore, point clouds thinning is an indispensable step in point clouds model reconstruction and other applications. To overcome the shortcomings of complex classification index and long time consuming in existing point clouds thinning algorithms, this paper proposes a point clouds fast thinning algorithm. Specifically, the two-dimensional index is established in plane linear array (x, y) for the scanned point clouds, and the thresholds of adjacent point distance difference and height difference are employed to further delete or retain the selected sample point. Sequentially, the index of sample point is traversed forwardly and backwardly until the process of point clouds thinning is completed. The results suggest that the proposed new algorithm can be applied to different targets when the thresholds are built in advance. Besides, the new method also performs superiority in time consuming, modelling accuracy and feature retention by comparing with octree thinning algorithm.\",\"PeriodicalId\":415161,\"journal\":{\"name\":\"J. Inf. Process. Syst.\",\"volume\":\"15 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inf. Process. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3745/JIPS.01.0057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Process. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/JIPS.01.0057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

点云具有表达空间实体的能力,但点云冗余在计算机识别和模型构建中往往存在一定的不确定性。因此,点云细化是点云模型重建等应用中不可缺少的步骤。针对现有点云细化算法分类指标复杂、耗时长等缺点,提出了一种点云快速细化算法。具体而言,对扫描点云在平面线性阵列(x, y)中建立二维索引,利用相邻点距离差和高差阈值进一步删除或保留所选样本点。依次对样本点的索引进行前后遍历,直至点云细化过程完成。结果表明,在预先设定阈值的情况下,新算法可以适用于不同的目标。此外,与八叉树细化算法相比,该方法在耗时、建模精度和特征保留方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Point Clouds Fast Thinning Algorithm Based on Sample Point Spatial Neighborhood
Point clouds have ability to express the spatial entities, however, the point clouds redundancy always involves some uncertainties in computer recognition and model construction. Therefore, point clouds thinning is an indispensable step in point clouds model reconstruction and other applications. To overcome the shortcomings of complex classification index and long time consuming in existing point clouds thinning algorithms, this paper proposes a point clouds fast thinning algorithm. Specifically, the two-dimensional index is established in plane linear array (x, y) for the scanned point clouds, and the thresholds of adjacent point distance difference and height difference are employed to further delete or retain the selected sample point. Sequentially, the index of sample point is traversed forwardly and backwardly until the process of point clouds thinning is completed. The results suggest that the proposed new algorithm can be applied to different targets when the thresholds are built in advance. Besides, the new method also performs superiority in time consuming, modelling accuracy and feature retention by comparing with octree thinning algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信