基于马尔可夫模型的高效病人护理聚类

S. McClean, M. Faddy, P. Millard
{"title":"基于马尔可夫模型的高效病人护理聚类","authors":"S. McClean, M. Faddy, P. Millard","doi":"10.1109/CBMS.2005.72","DOIUrl":null,"url":null,"abstract":"Phase-type distributions were used to carry out model-based clustering of patients using the time spent by the patients in hospital, with maximum likelihood estimation of the model parameters. These parameters were allowed to vary with covariates so that the probability of cluster membership was dependent on these covariates. Expressions for the cluster membership probabilities and corresponding distributions of length of stay in care were found where the membership probabilities can be updated to take account of length of stay to date. The approach was applied to data on geriatric patients from an administrative database of a London hospital. The age of the patients at admission to care and the year of admission were included as covariates. Differential effects of these covariates on the various parameters of the fitted model were demonstrated, and interpretations of these effects made. The clusters here corresponded to patient pathways, with different length of stay distributions, varying care needs and different associated costs. By using the membership probabilities to assign patients to such clusters, care may thus be suited to their predicted pathway. Such an approach might be used in association with healthcare process improvement technologies, such as Lean Thinking or Six Sigma.","PeriodicalId":119367,"journal":{"name":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Markov model-based clustering for efficient patient care\",\"authors\":\"S. McClean, M. Faddy, P. Millard\",\"doi\":\"10.1109/CBMS.2005.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase-type distributions were used to carry out model-based clustering of patients using the time spent by the patients in hospital, with maximum likelihood estimation of the model parameters. These parameters were allowed to vary with covariates so that the probability of cluster membership was dependent on these covariates. Expressions for the cluster membership probabilities and corresponding distributions of length of stay in care were found where the membership probabilities can be updated to take account of length of stay to date. The approach was applied to data on geriatric patients from an administrative database of a London hospital. The age of the patients at admission to care and the year of admission were included as covariates. Differential effects of these covariates on the various parameters of the fitted model were demonstrated, and interpretations of these effects made. The clusters here corresponded to patient pathways, with different length of stay distributions, varying care needs and different associated costs. By using the membership probabilities to assign patients to such clusters, care may thus be suited to their predicted pathway. Such an approach might be used in association with healthcare process improvement technologies, such as Lean Thinking or Six Sigma.\",\"PeriodicalId\":119367,\"journal\":{\"name\":\"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2005.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2005.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

采用相型分布,利用患者住院时间对患者进行基于模型的聚类,对模型参数进行最大似然估计。允许这些参数随协变量变化,因此集群隶属度的概率依赖于这些协变量。发现了集群成员概率和相应的护理时间分布的表达式,其中成员概率可以更新以考虑到迄今为止的停留时间。该方法应用于来自伦敦一家医院行政数据库的老年患者数据。患者入院时的年龄和入院年份作为协变量。这些协变量对拟合模型的各种参数的微分效应进行了论证,并对这些效应进行了解释。这里的集群对应于患者路径,具有不同的住院时间分布,不同的护理需求和不同的相关成本。通过使用成员概率将患者分配到这样的集群,护理可能因此适合于他们的预测路径。这种方法可以与医疗保健过程改进技术(如精益思维或六西格玛)结合使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Markov model-based clustering for efficient patient care
Phase-type distributions were used to carry out model-based clustering of patients using the time spent by the patients in hospital, with maximum likelihood estimation of the model parameters. These parameters were allowed to vary with covariates so that the probability of cluster membership was dependent on these covariates. Expressions for the cluster membership probabilities and corresponding distributions of length of stay in care were found where the membership probabilities can be updated to take account of length of stay to date. The approach was applied to data on geriatric patients from an administrative database of a London hospital. The age of the patients at admission to care and the year of admission were included as covariates. Differential effects of these covariates on the various parameters of the fitted model were demonstrated, and interpretations of these effects made. The clusters here corresponded to patient pathways, with different length of stay distributions, varying care needs and different associated costs. By using the membership probabilities to assign patients to such clusters, care may thus be suited to their predicted pathway. Such an approach might be used in association with healthcare process improvement technologies, such as Lean Thinking or Six Sigma.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信