基于姿态估计的实时多摄像头多人动作识别

Jonathan Then Sien Phang, K. Lim
{"title":"基于姿态估计的实时多摄像头多人动作识别","authors":"Jonathan Then Sien Phang, K. Lim","doi":"10.1145/3310986.3311006","DOIUrl":null,"url":null,"abstract":"Action recognition possesses challenging issues in real-time multi-camera scenario when dealing with multi-person such as occlusion, pose variance and action interaction. In this paper, a real-time pipeline is proposed to address multi-person action recognition in multi-camera setup using joint key-points sequences from detected person. Joints trajectory is the important time-series information to identify actions. 14 key-points from human joints are scaled with relative to the Euclidean distance of neck-to-pelvis to obtain standard size of person, which is invariant to camera distance. Subsequently, 3D histogram correlation is applied to match multi-person identity. An indexed person with a series of action attribute are collected and fed into Long Short-Term Memory (LSTM) recurrent neural network. The proposed pipeline uses spatial-temporal feature of person's joint key-points trajectory for action recognition. Minimal single pass forward time through the LSTM network enables real-time multi-person action recognition in a video sequence. The proposed pipeline achieved up to 13 frames per second with 92% recognition rate with two camera setups.","PeriodicalId":252781,"journal":{"name":"Proceedings of the 3rd International Conference on Machine Learning and Soft Computing","volume":"52 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Real-Time Multi-Camera Multi-Person Action Recognition using Pose Estimation\",\"authors\":\"Jonathan Then Sien Phang, K. Lim\",\"doi\":\"10.1145/3310986.3311006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Action recognition possesses challenging issues in real-time multi-camera scenario when dealing with multi-person such as occlusion, pose variance and action interaction. In this paper, a real-time pipeline is proposed to address multi-person action recognition in multi-camera setup using joint key-points sequences from detected person. Joints trajectory is the important time-series information to identify actions. 14 key-points from human joints are scaled with relative to the Euclidean distance of neck-to-pelvis to obtain standard size of person, which is invariant to camera distance. Subsequently, 3D histogram correlation is applied to match multi-person identity. An indexed person with a series of action attribute are collected and fed into Long Short-Term Memory (LSTM) recurrent neural network. The proposed pipeline uses spatial-temporal feature of person's joint key-points trajectory for action recognition. Minimal single pass forward time through the LSTM network enables real-time multi-person action recognition in a video sequence. The proposed pipeline achieved up to 13 frames per second with 92% recognition rate with two camera setups.\",\"PeriodicalId\":252781,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Machine Learning and Soft Computing\",\"volume\":\"52 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Machine Learning and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3310986.3311006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Machine Learning and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310986.3311006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在实时多摄像头场景中,动作识别在处理多人遮挡、姿态变化和动作交互等问题时具有挑战性。本文提出了一种实时流水线方法,利用被检测人的联合关键点序列来解决多摄像机环境下的多人动作识别问题。关节轨迹是识别动作的重要时间序列信息。人体关节的14个关键点相对于颈部到骨盆的欧几里德距离进行缩放,得到人体的标准尺寸,该尺寸与摄像机距离不变。随后,应用三维直方图相关性进行多人身份匹配。收集具有一系列动作属性的索引人,并将其输入到长短期记忆递归神经网络中。该管道利用人体关节关键点轨迹的时空特征进行动作识别。通过LSTM网络的最小单次转发时间使视频序列中的实时多人动作识别成为可能。所提出的流水线在两个摄像头设置下实现了高达每秒13帧和92%的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Multi-Camera Multi-Person Action Recognition using Pose Estimation
Action recognition possesses challenging issues in real-time multi-camera scenario when dealing with multi-person such as occlusion, pose variance and action interaction. In this paper, a real-time pipeline is proposed to address multi-person action recognition in multi-camera setup using joint key-points sequences from detected person. Joints trajectory is the important time-series information to identify actions. 14 key-points from human joints are scaled with relative to the Euclidean distance of neck-to-pelvis to obtain standard size of person, which is invariant to camera distance. Subsequently, 3D histogram correlation is applied to match multi-person identity. An indexed person with a series of action attribute are collected and fed into Long Short-Term Memory (LSTM) recurrent neural network. The proposed pipeline uses spatial-temporal feature of person's joint key-points trajectory for action recognition. Minimal single pass forward time through the LSTM network enables real-time multi-person action recognition in a video sequence. The proposed pipeline achieved up to 13 frames per second with 92% recognition rate with two camera setups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信