给定度序列的自对偶多面体

Riccardo W. Maffucci
{"title":"给定度序列的自对偶多面体","authors":"Riccardo W. Maffucci","doi":"10.26493/2590-9770.1537.cf9","DOIUrl":null,"url":null,"abstract":"Given vertex valencies admissible for a self-dual polyhedral graph, we describe an algorithm to explicitly construct such a polyhedron. Inputting in the algorithm permutations of the degree sequence can give rise to non-isomorphic graphs. As an application, we find as a function of $n\\geq 3$ the minimal number of vertices for a self-dual polyhedron with at least one vertex of degree $i$ for each $3\\leq i\\leq n$, and construct such polyhedra. Moreover, we find a construction for non-self-dual polyhedral graphs of minimal order with at least one vertex of degree $i$ and at least one $i$-gonal face for each $3\\leq i\\leq n$.","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Self-dual polyhedra of given degree sequence\",\"authors\":\"Riccardo W. Maffucci\",\"doi\":\"10.26493/2590-9770.1537.cf9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given vertex valencies admissible for a self-dual polyhedral graph, we describe an algorithm to explicitly construct such a polyhedron. Inputting in the algorithm permutations of the degree sequence can give rise to non-isomorphic graphs. As an application, we find as a function of $n\\\\geq 3$ the minimal number of vertices for a self-dual polyhedron with at least one vertex of degree $i$ for each $3\\\\leq i\\\\leq n$, and construct such polyhedra. Moreover, we find a construction for non-self-dual polyhedral graphs of minimal order with at least one vertex of degree $i$ and at least one $i$-gonal face for each $3\\\\leq i\\\\leq n$.\",\"PeriodicalId\":236892,\"journal\":{\"name\":\"Art Discret. Appl. Math.\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art Discret. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/2590-9770.1537.cf9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1537.cf9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

给定自对偶多面体图的顶点值,给出了一种显式构造自对偶多面体的算法。在算法中输入度序列的置换可以得到非同构图。作为一个应用,我们找到了一个自对偶多面体(每个$3\leq i\leq n$至少有一个顶点的度数为$i$)的最小顶点数的函数$n\geq 3$,并构造了这样的多面体。此外,我们还找到了最小阶非自对偶多面体图的一种构造,其中每个$3\leq i\leq n$至少有一个度数为$i$的顶点和至少一个$i$的多边形面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-dual polyhedra of given degree sequence
Given vertex valencies admissible for a self-dual polyhedral graph, we describe an algorithm to explicitly construct such a polyhedron. Inputting in the algorithm permutations of the degree sequence can give rise to non-isomorphic graphs. As an application, we find as a function of $n\geq 3$ the minimal number of vertices for a self-dual polyhedron with at least one vertex of degree $i$ for each $3\leq i\leq n$, and construct such polyhedra. Moreover, we find a construction for non-self-dual polyhedral graphs of minimal order with at least one vertex of degree $i$ and at least one $i$-gonal face for each $3\leq i\leq n$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信