听觉诱发电位提取中的基本线性滤波器

S. Aydin
{"title":"听觉诱发电位提取中的基本线性滤波器","authors":"S. Aydin","doi":"10.1109/ISPA.2007.4383698","DOIUrl":null,"url":null,"abstract":"The aim of this study is to assess the performance of additivity-based linear filtering techniques into two groups in extracting of auditory evoked potentials (EPs) from a relatively small number of sweeps. We named these groups as: Group A (the Wiener filtering (WF) and coherence weighted WF (CWWF) of orthogonal projections) and Group B (standard adaptive algorithms of Least Mean Square (LMS), Recursive Least Square (RLS), and one-step Kalman filtering (KF)). All methods are compared to the traditional ensemble averaging (EA) in simulations, pseudo-simulations and experimental studies based on the signal-to-noise-ratio (SNR) enhancement. We observed that the KF is the best methods among them. The filtering of the projections instead of the raw data improves the performance of filtering operations in both cases of the LMS and WF. The CWWF works better than the conventional WF when it is applied to the projections as well. In conclusion, most of the linear filters show definitely better performance compared to EA. The KF effectively reduce the experimental time (to one-fourth of that required by EA). The projection method so called Subspace Method (SM) in the current study is a useful pre-filter to significantly reduce the noise on the raw data. The use of the SM is revealed in auditory EP estimation. The SM improves the performance of different algorithms.","PeriodicalId":112420,"journal":{"name":"2007 5th International Symposium on Image and Signal Processing and Analysis","volume":"35 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Basic Linear Filters in Extracting of Auditory Evoked Potentials\",\"authors\":\"S. Aydin\",\"doi\":\"10.1109/ISPA.2007.4383698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to assess the performance of additivity-based linear filtering techniques into two groups in extracting of auditory evoked potentials (EPs) from a relatively small number of sweeps. We named these groups as: Group A (the Wiener filtering (WF) and coherence weighted WF (CWWF) of orthogonal projections) and Group B (standard adaptive algorithms of Least Mean Square (LMS), Recursive Least Square (RLS), and one-step Kalman filtering (KF)). All methods are compared to the traditional ensemble averaging (EA) in simulations, pseudo-simulations and experimental studies based on the signal-to-noise-ratio (SNR) enhancement. We observed that the KF is the best methods among them. The filtering of the projections instead of the raw data improves the performance of filtering operations in both cases of the LMS and WF. The CWWF works better than the conventional WF when it is applied to the projections as well. In conclusion, most of the linear filters show definitely better performance compared to EA. The KF effectively reduce the experimental time (to one-fourth of that required by EA). The projection method so called Subspace Method (SM) in the current study is a useful pre-filter to significantly reduce the noise on the raw data. The use of the SM is revealed in auditory EP estimation. The SM improves the performance of different algorithms.\",\"PeriodicalId\":112420,\"journal\":{\"name\":\"2007 5th International Symposium on Image and Signal Processing and Analysis\",\"volume\":\"35 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 5th International Symposium on Image and Signal Processing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA.2007.4383698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 5th International Symposium on Image and Signal Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2007.4383698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究的目的是评估两组基于可加性的线性滤波技术在从相对较少的扫描中提取听觉诱发电位(EPs)方面的表现。我们将这些组命名为:A组(正交投影的维纳滤波(WF)和相干加权WF (CWWF))和B组(最小均方(LMS)、递归最小二乘法(RLS)和一步卡尔曼滤波(KF)的标准自适应算法)。在信噪比增强的基础上,将这些方法与传统的集合平均方法进行了仿真、伪仿真和实验研究。我们观察到KF是其中最好的方法。在LMS和WF两种情况下,对投影而不是原始数据进行过滤可以提高过滤操作的性能。当应用于预测时,CWWF比传统WF效果更好。综上所述,大多数线性滤波器的性能明显优于EA。KF有效地缩短了实验时间(为EA所需时间的四分之一)。目前研究的投影法即子空间法(SM)是一种有效的预滤波方法,可以显著降低原始数据中的噪声。SM在听觉电位估计中的应用。SM提高了不同算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Basic Linear Filters in Extracting of Auditory Evoked Potentials
The aim of this study is to assess the performance of additivity-based linear filtering techniques into two groups in extracting of auditory evoked potentials (EPs) from a relatively small number of sweeps. We named these groups as: Group A (the Wiener filtering (WF) and coherence weighted WF (CWWF) of orthogonal projections) and Group B (standard adaptive algorithms of Least Mean Square (LMS), Recursive Least Square (RLS), and one-step Kalman filtering (KF)). All methods are compared to the traditional ensemble averaging (EA) in simulations, pseudo-simulations and experimental studies based on the signal-to-noise-ratio (SNR) enhancement. We observed that the KF is the best methods among them. The filtering of the projections instead of the raw data improves the performance of filtering operations in both cases of the LMS and WF. The CWWF works better than the conventional WF when it is applied to the projections as well. In conclusion, most of the linear filters show definitely better performance compared to EA. The KF effectively reduce the experimental time (to one-fourth of that required by EA). The projection method so called Subspace Method (SM) in the current study is a useful pre-filter to significantly reduce the noise on the raw data. The use of the SM is revealed in auditory EP estimation. The SM improves the performance of different algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信