基于在线学习的时间序列预测

Q. Song
{"title":"基于在线学习的时间序列预测","authors":"Q. Song","doi":"10.1109/ICMLA.2015.234","DOIUrl":null,"url":null,"abstract":"We propose a robust recurrent kernel online learning (RRKOL) algorithm based on the celebrated real-time recurrent learning (RTRL) approach that exploits the kernel trick in a recurrent online training manner. The RRKOL algorithm automatically weights the regularized term in the recurrent loss function such that we not only minimize the estimation error but also improve the generalization performance via sparsification with simulation support.","PeriodicalId":288427,"journal":{"name":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","volume":"311 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Series Prediction Based on Online Learning\",\"authors\":\"Q. Song\",\"doi\":\"10.1109/ICMLA.2015.234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a robust recurrent kernel online learning (RRKOL) algorithm based on the celebrated real-time recurrent learning (RTRL) approach that exploits the kernel trick in a recurrent online training manner. The RRKOL algorithm automatically weights the regularized term in the recurrent loss function such that we not only minimize the estimation error but also improve the generalization performance via sparsification with simulation support.\",\"PeriodicalId\":288427,\"journal\":{\"name\":\"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"311 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2015.234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2015.234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种鲁棒的循环核在线学习(RRKOL)算法,该算法基于著名的实时循环学习(RTRL)方法,以循环在线训练的方式利用核技巧。RRKOL算法自动对循环损失函数中的正则化项进行加权,不仅使估计误差最小化,而且通过仿真支持的稀疏化提高了泛化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time Series Prediction Based on Online Learning
We propose a robust recurrent kernel online learning (RRKOL) algorithm based on the celebrated real-time recurrent learning (RTRL) approach that exploits the kernel trick in a recurrent online training manner. The RRKOL algorithm automatically weights the regularized term in the recurrent loss function such that we not only minimize the estimation error but also improve the generalization performance via sparsification with simulation support.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信