矩形广义系统Kronecker标准形式的脉冲模分析

Abhinav Kumar, Mamoni Paitandi, M. Gupta
{"title":"矩形广义系统Kronecker标准形式的脉冲模分析","authors":"Abhinav Kumar, Mamoni Paitandi, M. Gupta","doi":"10.1109/ICC56513.2022.10093353","DOIUrl":null,"url":null,"abstract":"Unlike regular descriptor systems, there are various notions for impulse freeness in rectangular linear descriptor systems. Descriptor systems, in general, do not admit arbitrary initial conditions. In this note, conditions for having no impulsive modes, free of impulse, and admitting arbitrary or particular initial conditions are analyzed by deriving their respective Kronecker canonical forms for rectangular descriptor systems. Some other equivalent conditions are also discussed. Numerical examples are presented to illustrate the theory.","PeriodicalId":101654,"journal":{"name":"2022 Eighth Indian Control Conference (ICC)","volume":"4 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of Impulsive Modes in Kronecker Canonical Form for Rectangular Descriptor Systems\",\"authors\":\"Abhinav Kumar, Mamoni Paitandi, M. Gupta\",\"doi\":\"10.1109/ICC56513.2022.10093353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike regular descriptor systems, there are various notions for impulse freeness in rectangular linear descriptor systems. Descriptor systems, in general, do not admit arbitrary initial conditions. In this note, conditions for having no impulsive modes, free of impulse, and admitting arbitrary or particular initial conditions are analyzed by deriving their respective Kronecker canonical forms for rectangular descriptor systems. Some other equivalent conditions are also discussed. Numerical examples are presented to illustrate the theory.\",\"PeriodicalId\":101654,\"journal\":{\"name\":\"2022 Eighth Indian Control Conference (ICC)\",\"volume\":\"4 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Eighth Indian Control Conference (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC56513.2022.10093353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Eighth Indian Control Conference (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC56513.2022.10093353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

与正则广义系统不同,矩形线性广义系统的脉冲自由度有各种不同的概念。广义系统一般不承认任意初始条件。本文通过推导矩形广义系统的Kronecker规范形式,分析了无脉冲模态、无脉冲模态和允许任意或特定初始条件的条件。还讨论了其他一些等价条件。给出了数值算例来说明这一理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Impulsive Modes in Kronecker Canonical Form for Rectangular Descriptor Systems
Unlike regular descriptor systems, there are various notions for impulse freeness in rectangular linear descriptor systems. Descriptor systems, in general, do not admit arbitrary initial conditions. In this note, conditions for having no impulsive modes, free of impulse, and admitting arbitrary or particular initial conditions are analyzed by deriving their respective Kronecker canonical forms for rectangular descriptor systems. Some other equivalent conditions are also discussed. Numerical examples are presented to illustrate the theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信