{"title":"基于罚函数的MIMO系统多项式约束检测","authors":"T. Cui, C. Tellambura","doi":"10.1109/PACRIM.2005.1517227","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a family of approximate maximum likelihood (ML) detectors for multiple-input multiple-output (MlMO) systems by relaxing the ML detection problem. Polynomial constraints are formulated for any signal constellation. The resulting relaxed constrained optimization problem is solved using a penalty function approach. Moreover, to escape from the local minima and to improve the performance of detection, a probabilistic restart algorithm based on noise statistics is proposed. Simulation results show that our polynomial constrained detectors perform better than several existing detectors.","PeriodicalId":346880,"journal":{"name":"PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005.","volume":"11 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial constrained detection for MIMO systems using penalty function\",\"authors\":\"T. Cui, C. Tellambura\",\"doi\":\"10.1109/PACRIM.2005.1517227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop a family of approximate maximum likelihood (ML) detectors for multiple-input multiple-output (MlMO) systems by relaxing the ML detection problem. Polynomial constraints are formulated for any signal constellation. The resulting relaxed constrained optimization problem is solved using a penalty function approach. Moreover, to escape from the local minima and to improve the performance of detection, a probabilistic restart algorithm based on noise statistics is proposed. Simulation results show that our polynomial constrained detectors perform better than several existing detectors.\",\"PeriodicalId\":346880,\"journal\":{\"name\":\"PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005.\",\"volume\":\"11 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACRIM.2005.1517227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.2005.1517227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polynomial constrained detection for MIMO systems using penalty function
In this paper, we develop a family of approximate maximum likelihood (ML) detectors for multiple-input multiple-output (MlMO) systems by relaxing the ML detection problem. Polynomial constraints are formulated for any signal constellation. The resulting relaxed constrained optimization problem is solved using a penalty function approach. Moreover, to escape from the local minima and to improve the performance of detection, a probabilistic restart algorithm based on noise statistics is proposed. Simulation results show that our polynomial constrained detectors perform better than several existing detectors.