人脸识别的克罗内克积方程

Martijn Boussé, Nico Vervliet, Otto Debals, L. D. Lathauwer
{"title":"人脸识别的克罗内克积方程","authors":"Martijn Boussé, Nico Vervliet, Otto Debals, L. D. Lathauwer","doi":"10.1109/CAMSAP.2017.8313140","DOIUrl":null,"url":null,"abstract":"Various parameters influence face recognition such as expression, pose, and illumination. In contrast to matrices, tensors can be used to naturally accommodate for the different modes of variation. The multilinear singular value decomposition (MLSVD) then allows one to describe each mode with a factor matrix and the interaction between the modes with a coefficient tensor. In this paper, we show that each image in the tensor satisfying an MLSVD model can be expressed as a structured linear system called a Kronecker Product Equation (KPE). By solving a similar KPE for a new image, we can extract a feature vector that allows us to recognize the person with high performance. Additionally, more robust results can be obtained by using multiple images of the same person under different conditions, leading to a coupled KPE. Finally, our method can be used to update the database with an unknown person using only a few images instead of an image for each combination of conditions. We illustrate our method for the extended Yale Face Database B, achieving better performance than conventional methods such as Eigenfaces and other tensor-based techniques.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"50 s26","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Face recognition as a kronecker product equation\",\"authors\":\"Martijn Boussé, Nico Vervliet, Otto Debals, L. D. Lathauwer\",\"doi\":\"10.1109/CAMSAP.2017.8313140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various parameters influence face recognition such as expression, pose, and illumination. In contrast to matrices, tensors can be used to naturally accommodate for the different modes of variation. The multilinear singular value decomposition (MLSVD) then allows one to describe each mode with a factor matrix and the interaction between the modes with a coefficient tensor. In this paper, we show that each image in the tensor satisfying an MLSVD model can be expressed as a structured linear system called a Kronecker Product Equation (KPE). By solving a similar KPE for a new image, we can extract a feature vector that allows us to recognize the person with high performance. Additionally, more robust results can be obtained by using multiple images of the same person under different conditions, leading to a coupled KPE. Finally, our method can be used to update the database with an unknown person using only a few images instead of an image for each combination of conditions. We illustrate our method for the extended Yale Face Database B, achieving better performance than conventional methods such as Eigenfaces and other tensor-based techniques.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"50 s26\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

各种参数影响人脸识别,如表情、姿势和照明。与矩阵相反,张量可以用来自然地适应不同的变化模式。然后,多线性奇异值分解(MLSVD)允许用因子矩阵描述每个模态,并用系数张量描述模态之间的相互作用。在本文中,我们证明了满足MLSVD模型的张量中的每个图像都可以表示为一个称为Kronecker积方程(KPE)的结构化线性系统。通过对新图像求解类似的KPE,我们可以提取一个特征向量,使我们能够识别出具有高性能的人。此外,使用同一人在不同条件下的多幅图像可以获得更鲁棒的结果,从而导致耦合的KPE。最后,我们的方法可以用于更新数据库,其中包含一个未知的人,仅使用少数图像而不是每个条件组合使用一个图像。我们为扩展的耶鲁人脸数据库B展示了我们的方法,获得了比传统方法(如特征面和其他基于张量的技术)更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face recognition as a kronecker product equation
Various parameters influence face recognition such as expression, pose, and illumination. In contrast to matrices, tensors can be used to naturally accommodate for the different modes of variation. The multilinear singular value decomposition (MLSVD) then allows one to describe each mode with a factor matrix and the interaction between the modes with a coefficient tensor. In this paper, we show that each image in the tensor satisfying an MLSVD model can be expressed as a structured linear system called a Kronecker Product Equation (KPE). By solving a similar KPE for a new image, we can extract a feature vector that allows us to recognize the person with high performance. Additionally, more robust results can be obtained by using multiple images of the same person under different conditions, leading to a coupled KPE. Finally, our method can be used to update the database with an unknown person using only a few images instead of an image for each combination of conditions. We illustrate our method for the extended Yale Face Database B, achieving better performance than conventional methods such as Eigenfaces and other tensor-based techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信