更好的分布式图查询规划与侦察查询

T. Faltín, Vasileios Trigonakis, Ayoub Berdai, Luigi Fusco, Călin Iorgulescu, Sungpack Hong, Hassan Chafi
{"title":"更好的分布式图查询规划与侦察查询","authors":"T. Faltín, Vasileios Trigonakis, Ayoub Berdai, Luigi Fusco, Călin Iorgulescu, Sungpack Hong, Hassan Chafi","doi":"10.1145/3594778.3594884","DOIUrl":null,"url":null,"abstract":"Query planning is essential for graph query execution performance. In distributed graph processing, data partitioning and messaging significantly influence performance. However, these aspects are difficult to model analytically, which makes query planning especially challenging. This paper introduces scouting queries, a lightweight mechanism to gather runtime information about different query plans, which can then be used to choose the \"best\" plan. In a pipelined, depth-first-oriented graph processing engine, scouting queries typically execute for a brief amount of time with negligible overhead. Partial results can be reused to avoid redundant work. We evaluate scouting queries and show that they bring speedups of up to 8.7× for heavy queries, while adding low overhead for those queries that do not benefit.","PeriodicalId":371215,"journal":{"name":"Proceedings of the 6th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)","volume":"17 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Better Distributed Graph Query Planning With Scouting Queries\",\"authors\":\"T. Faltín, Vasileios Trigonakis, Ayoub Berdai, Luigi Fusco, Călin Iorgulescu, Sungpack Hong, Hassan Chafi\",\"doi\":\"10.1145/3594778.3594884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Query planning is essential for graph query execution performance. In distributed graph processing, data partitioning and messaging significantly influence performance. However, these aspects are difficult to model analytically, which makes query planning especially challenging. This paper introduces scouting queries, a lightweight mechanism to gather runtime information about different query plans, which can then be used to choose the \\\"best\\\" plan. In a pipelined, depth-first-oriented graph processing engine, scouting queries typically execute for a brief amount of time with negligible overhead. Partial results can be reused to avoid redundant work. We evaluate scouting queries and show that they bring speedups of up to 8.7× for heavy queries, while adding low overhead for those queries that do not benefit.\",\"PeriodicalId\":371215,\"journal\":{\"name\":\"Proceedings of the 6th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)\",\"volume\":\"17 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3594778.3594884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3594778.3594884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

查询规划对于图查询执行性能至关重要。在分布式图处理中,数据分区和消息传递对性能影响很大。然而,很难对这些方面进行分析建模,这使得查询规划特别具有挑战性。本文介绍了侦察查询,这是一种轻量级机制,用于收集关于不同查询计划的运行时信息,然后可以使用这些信息来选择“最佳”计划。在流水线的、面向深度优先的图形处理引擎中,侦察查询通常执行的时间很短,开销可以忽略不计。可以重用部分结果以避免冗余工作。我们对侦察查询进行了评估,结果表明,它们为重查询带来了高达8.7倍的速度提升,同时为那些没有好处的查询增加了较低的开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Better Distributed Graph Query Planning With Scouting Queries
Query planning is essential for graph query execution performance. In distributed graph processing, data partitioning and messaging significantly influence performance. However, these aspects are difficult to model analytically, which makes query planning especially challenging. This paper introduces scouting queries, a lightweight mechanism to gather runtime information about different query plans, which can then be used to choose the "best" plan. In a pipelined, depth-first-oriented graph processing engine, scouting queries typically execute for a brief amount of time with negligible overhead. Partial results can be reused to avoid redundant work. We evaluate scouting queries and show that they bring speedups of up to 8.7× for heavy queries, while adding low overhead for those queries that do not benefit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信