{"title":"提高累犯预测模型的准确性和可解释性","authors":"Tammy Babad, Soon Chun","doi":"10.32473/flairs.36.133382","DOIUrl":null,"url":null,"abstract":"Predicting recidivism is a challenging task, but it helps support courts in their decision-making process. Automated prediction models suffer from low accuracy and are associated with criticism for biased and unexplainable decision-making. In this poster, we present different machine-learning models with just a few selected features that achieve accuracies as good as models that use larger sets of features. In addition, we investigate the influencing features that contribute to recidivism prediction, which can enhance the explainability of the learned models. \n ","PeriodicalId":302103,"journal":{"name":"The International FLAIRS Conference Proceedings","volume":"50 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Accuracy and Explainability of Recidivism Prediction Models\",\"authors\":\"Tammy Babad, Soon Chun\",\"doi\":\"10.32473/flairs.36.133382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting recidivism is a challenging task, but it helps support courts in their decision-making process. Automated prediction models suffer from low accuracy and are associated with criticism for biased and unexplainable decision-making. In this poster, we present different machine-learning models with just a few selected features that achieve accuracies as good as models that use larger sets of features. In addition, we investigate the influencing features that contribute to recidivism prediction, which can enhance the explainability of the learned models. \\n \",\"PeriodicalId\":302103,\"journal\":{\"name\":\"The International FLAIRS Conference Proceedings\",\"volume\":\"50 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International FLAIRS Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32473/flairs.36.133382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International FLAIRS Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32473/flairs.36.133382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing Accuracy and Explainability of Recidivism Prediction Models
Predicting recidivism is a challenging task, but it helps support courts in their decision-making process. Automated prediction models suffer from low accuracy and are associated with criticism for biased and unexplainable decision-making. In this poster, we present different machine-learning models with just a few selected features that achieve accuracies as good as models that use larger sets of features. In addition, we investigate the influencing features that contribute to recidivism prediction, which can enhance the explainability of the learned models.