语义元数据的上下文

K. Haase
{"title":"语义元数据的上下文","authors":"K. Haase","doi":"10.1145/1027527.1027574","DOIUrl":null,"url":null,"abstract":"This article argues for the growing importance of quality metadata and the equation of that quality with precision and semantic grounding. Such semantic grounding requires metadata that derives from intentional human intervention as well as mechanistic measurement of content media. In both cases, one chief problem in the automatic generation of semantic metadata is ambiguity leading to the overgeneration of inaccurate annotations. We look at a particular richly annotated image collection to show how context dramatically reduces the problem of ambiguity over this particular corpus. In particular, we consider both the abstract measurement of \"contextual ambiguity\" over the collection and the application of a particular disambiguation algorithm to synthesized keyword searches across the selection.","PeriodicalId":292207,"journal":{"name":"MULTIMEDIA '04","volume":"361 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Context for semantic metadata\",\"authors\":\"K. Haase\",\"doi\":\"10.1145/1027527.1027574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article argues for the growing importance of quality metadata and the equation of that quality with precision and semantic grounding. Such semantic grounding requires metadata that derives from intentional human intervention as well as mechanistic measurement of content media. In both cases, one chief problem in the automatic generation of semantic metadata is ambiguity leading to the overgeneration of inaccurate annotations. We look at a particular richly annotated image collection to show how context dramatically reduces the problem of ambiguity over this particular corpus. In particular, we consider both the abstract measurement of \\\"contextual ambiguity\\\" over the collection and the application of a particular disambiguation algorithm to synthesized keyword searches across the selection.\",\"PeriodicalId\":292207,\"journal\":{\"name\":\"MULTIMEDIA '04\",\"volume\":\"361 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MULTIMEDIA '04\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1027527.1027574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MULTIMEDIA '04","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1027527.1027574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

本文论证了高质量元数据日益增长的重要性,以及这种质量与精度和语义基础的关系。这种语义基础需要源自有意的人为干预以及内容媒体的机械测量的元数据。在这两种情况下,自动生成语义元数据的一个主要问题是歧义性导致过度生成不准确的注释。我们看一个特殊的丰富注释的图像集合,以显示上下文如何显着减少这个特定语料库的歧义问题。特别是,我们考虑了集合上“上下文歧义”的抽象测量和特定消歧义算法在整个选择中合成关键字搜索的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context for semantic metadata
This article argues for the growing importance of quality metadata and the equation of that quality with precision and semantic grounding. Such semantic grounding requires metadata that derives from intentional human intervention as well as mechanistic measurement of content media. In both cases, one chief problem in the automatic generation of semantic metadata is ambiguity leading to the overgeneration of inaccurate annotations. We look at a particular richly annotated image collection to show how context dramatically reduces the problem of ambiguity over this particular corpus. In particular, we consider both the abstract measurement of "contextual ambiguity" over the collection and the application of a particular disambiguation algorithm to synthesized keyword searches across the selection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信