随机振动下设备缺口输入的确定

K. Renji
{"title":"随机振动下设备缺口输入的确定","authors":"K. Renji","doi":"10.20855/ijav.2021.26.41814","DOIUrl":null,"url":null,"abstract":"Equipment that is mounted on a spacecraft is subjected to random vibration tests to verify whether they can withstand the specified random loads. These tests are generally carried out by using shaker systems during which equipment experiences very high responses at the natural frequencies of the equipment. To reduce such over-testing, notching of the input is done. Notching of the input is normally carried out by considering the force generated at the base and limiting it to a specified value. To accomplish the notching, the force spectrum to be limited and measurement of base force during the tests are needed. This work shows that the acceleration input at the interface of equipment gets reduced at its resonance frequency and this feature can be utilized in arriving at the notched input. An expression to determine the depth of notching is derived and the results are compared with those obtained using numerical simulations. The depth of the notch increases with the response of the oscillator and it is sensitive to the stiffness ratios rather than the mass ratios of the oscillator and the mounting panel. This behavior and the expressions derived can be effectively used in arriving at the notched input for an equipment without the need for measuring the base force, especially for random vibration testing, which is demonstrated with an example.","PeriodicalId":131358,"journal":{"name":"The International Journal of Acoustics and Vibration","volume":"8 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of Notched Input for Equipment Under Random Vibrations\",\"authors\":\"K. Renji\",\"doi\":\"10.20855/ijav.2021.26.41814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Equipment that is mounted on a spacecraft is subjected to random vibration tests to verify whether they can withstand the specified random loads. These tests are generally carried out by using shaker systems during which equipment experiences very high responses at the natural frequencies of the equipment. To reduce such over-testing, notching of the input is done. Notching of the input is normally carried out by considering the force generated at the base and limiting it to a specified value. To accomplish the notching, the force spectrum to be limited and measurement of base force during the tests are needed. This work shows that the acceleration input at the interface of equipment gets reduced at its resonance frequency and this feature can be utilized in arriving at the notched input. An expression to determine the depth of notching is derived and the results are compared with those obtained using numerical simulations. The depth of the notch increases with the response of the oscillator and it is sensitive to the stiffness ratios rather than the mass ratios of the oscillator and the mounting panel. This behavior and the expressions derived can be effectively used in arriving at the notched input for an equipment without the need for measuring the base force, especially for random vibration testing, which is demonstrated with an example.\",\"PeriodicalId\":131358,\"journal\":{\"name\":\"The International Journal of Acoustics and Vibration\",\"volume\":\"8 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Journal of Acoustics and Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20855/ijav.2021.26.41814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Acoustics and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20855/ijav.2021.26.41814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

安装在航天器上的设备要进行随机振动试验,以验证它们是否能承受规定的随机载荷。这些测试通常通过使用激振器系统进行,在此过程中,设备在设备的固有频率下经历非常高的响应。为了减少这种过度测试,需要对输入进行陷波。输入的切槽通常是通过考虑在基座上产生的力并将其限制在指定的值来进行的。为了完成刻痕,需要对力谱进行限制,并在试验过程中进行基础力的测量。研究表明,设备界面处的加速度输入在其共振频率处减小,可以利用这一特征得到陷波输入。导出了确定切痕深度的表达式,并与数值模拟结果进行了比较。缺口的深度随振荡器响应的增加而增加,它对振荡器和安装板的刚度比而不是质量比敏感。该特性及其表达式可以有效地用于不需要测量基础力的设备的缺口输入,特别是用于随机振动测试,并通过实例证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of Notched Input for Equipment Under Random Vibrations
Equipment that is mounted on a spacecraft is subjected to random vibration tests to verify whether they can withstand the specified random loads. These tests are generally carried out by using shaker systems during which equipment experiences very high responses at the natural frequencies of the equipment. To reduce such over-testing, notching of the input is done. Notching of the input is normally carried out by considering the force generated at the base and limiting it to a specified value. To accomplish the notching, the force spectrum to be limited and measurement of base force during the tests are needed. This work shows that the acceleration input at the interface of equipment gets reduced at its resonance frequency and this feature can be utilized in arriving at the notched input. An expression to determine the depth of notching is derived and the results are compared with those obtained using numerical simulations. The depth of the notch increases with the response of the oscillator and it is sensitive to the stiffness ratios rather than the mass ratios of the oscillator and the mounting panel. This behavior and the expressions derived can be effectively used in arriving at the notched input for an equipment without the need for measuring the base force, especially for random vibration testing, which is demonstrated with an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信