基于人工神经网络的流量识别[互联网流量]

A. Ali, R. Tervo
{"title":"基于人工神经网络的流量识别[互联网流量]","authors":"A. Ali, R. Tervo","doi":"10.1109/CCECE.2001.933764","DOIUrl":null,"url":null,"abstract":"The paper investigates the use of artificial neural networks (ANN) to unconventionally classify Internet traffic. Structurally and functionally, the classifier used is a feedforward multilayer layer perceptron (FFMLP) network trained using backpropagation. The inputs are random samples of bits from a bit stream (i.e. all the inputs are either 1 or 0). The data was collected and pre-processed, then used to train, test and evaluate the classifier. Despite the lower capability to identify certain data types, the algorithm has shown that it has very good features as a classifier. SMTP, TELNET, FTP, HTTP, IP TELEPHONY and UDP data types were used in the investigation.","PeriodicalId":184523,"journal":{"name":"Canadian Conference on Electrical and Computer Engineering 2001. Conference Proceedings (Cat. No.01TH8555)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Traffic identification using artificial neural network [Internet traffic]\",\"authors\":\"A. Ali, R. Tervo\",\"doi\":\"10.1109/CCECE.2001.933764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper investigates the use of artificial neural networks (ANN) to unconventionally classify Internet traffic. Structurally and functionally, the classifier used is a feedforward multilayer layer perceptron (FFMLP) network trained using backpropagation. The inputs are random samples of bits from a bit stream (i.e. all the inputs are either 1 or 0). The data was collected and pre-processed, then used to train, test and evaluate the classifier. Despite the lower capability to identify certain data types, the algorithm has shown that it has very good features as a classifier. SMTP, TELNET, FTP, HTTP, IP TELEPHONY and UDP data types were used in the investigation.\",\"PeriodicalId\":184523,\"journal\":{\"name\":\"Canadian Conference on Electrical and Computer Engineering 2001. Conference Proceedings (Cat. No.01TH8555)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Conference on Electrical and Computer Engineering 2001. Conference Proceedings (Cat. No.01TH8555)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE.2001.933764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Conference on Electrical and Computer Engineering 2001. Conference Proceedings (Cat. No.01TH8555)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2001.933764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了利用人工神经网络(ANN)对互联网流量进行非常规分类。在结构和功能上,使用的分类器是使用反向传播训练的前馈多层感知器(FFMLP)网络。输入是来自比特流的随机比特样本(即所有输入都是1或0)。收集数据并进行预处理,然后用于训练,测试和评估分类器。尽管识别某些数据类型的能力较低,但该算法已经显示出它作为分类器具有非常好的特性。调查中使用了SMTP、TELNET、FTP、HTTP、IP TELEPHONY和UDP数据类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traffic identification using artificial neural network [Internet traffic]
The paper investigates the use of artificial neural networks (ANN) to unconventionally classify Internet traffic. Structurally and functionally, the classifier used is a feedforward multilayer layer perceptron (FFMLP) network trained using backpropagation. The inputs are random samples of bits from a bit stream (i.e. all the inputs are either 1 or 0). The data was collected and pre-processed, then used to train, test and evaluate the classifier. Despite the lower capability to identify certain data types, the algorithm has shown that it has very good features as a classifier. SMTP, TELNET, FTP, HTTP, IP TELEPHONY and UDP data types were used in the investigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信