L-CoIns:基于实例感知的语言着色

Zheng Chang, Shuchen Weng, Pei Zhang, Yu Li, Si Li, Boxin Shi
{"title":"L-CoIns:基于实例感知的语言着色","authors":"Zheng Chang, Shuchen Weng, Pei Zhang, Yu Li, Si Li, Boxin Shi","doi":"10.1109/CVPR52729.2023.01842","DOIUrl":null,"url":null,"abstract":"Language-based colorization produces plausible colors consistent with the language description provided by the user. Recent studies introduce additional annotation to prevent color-object coupling and mismatch issues, but they still have difficulty in distinguishing instances corresponding to the same object words. In this paper, we propose a transformer-based framework to automatically aggregate similar image patches and achieve instance awareness without any additional knowledge. By applying our presented luminance augmentation and counter-color loss to break down the statistical correlation between luminance and color words, our model is driven to synthesize colors with better descriptive consistency. We further collect a dataset to provide distinctive visual characteristics and detailed language descriptions for multiple instances in the same image. Extensive experiments demonstrate our advantages of synthesizing visually pleasing and description-consistent results of instance-aware colorization.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"33 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"L-CoIns: Language-based Colorization With Instance Awareness\",\"authors\":\"Zheng Chang, Shuchen Weng, Pei Zhang, Yu Li, Si Li, Boxin Shi\",\"doi\":\"10.1109/CVPR52729.2023.01842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Language-based colorization produces plausible colors consistent with the language description provided by the user. Recent studies introduce additional annotation to prevent color-object coupling and mismatch issues, but they still have difficulty in distinguishing instances corresponding to the same object words. In this paper, we propose a transformer-based framework to automatically aggregate similar image patches and achieve instance awareness without any additional knowledge. By applying our presented luminance augmentation and counter-color loss to break down the statistical correlation between luminance and color words, our model is driven to synthesize colors with better descriptive consistency. We further collect a dataset to provide distinctive visual characteristics and detailed language descriptions for multiple instances in the same image. Extensive experiments demonstrate our advantages of synthesizing visually pleasing and description-consistent results of instance-aware colorization.\",\"PeriodicalId\":376416,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"33 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52729.2023.01842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.01842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于语言的着色产生与用户提供的语言描述一致的可信颜色。最近的研究引入了额外的注释来防止颜色-对象耦合和不匹配问题,但它们仍然难以区分对应于相同对象词的实例。在本文中,我们提出了一个基于变换的框架来自动聚合相似的图像补丁并实现实例感知,而无需任何额外的知识。通过亮度增强和反颜色损失来打破亮度和颜色词之间的统计相关性,我们的模型被驱动来合成具有更好描述一致性的颜色。我们进一步收集数据集,为同一图像中的多个实例提供独特的视觉特征和详细的语言描述。大量的实验证明了我们在合成视觉愉悦和描述一致的实例感知着色结果方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
L-CoIns: Language-based Colorization With Instance Awareness
Language-based colorization produces plausible colors consistent with the language description provided by the user. Recent studies introduce additional annotation to prevent color-object coupling and mismatch issues, but they still have difficulty in distinguishing instances corresponding to the same object words. In this paper, we propose a transformer-based framework to automatically aggregate similar image patches and achieve instance awareness without any additional knowledge. By applying our presented luminance augmentation and counter-color loss to break down the statistical correlation between luminance and color words, our model is driven to synthesize colors with better descriptive consistency. We further collect a dataset to provide distinctive visual characteristics and detailed language descriptions for multiple instances in the same image. Extensive experiments demonstrate our advantages of synthesizing visually pleasing and description-consistent results of instance-aware colorization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信