DP-Fusion:在线多传感器识别的通用框架

Ming Liu, Lujia Wang, R. Siegwart
{"title":"DP-Fusion:在线多传感器识别的通用框架","authors":"Ming Liu, Lujia Wang, R. Siegwart","doi":"10.1109/MFI.2012.6343031","DOIUrl":null,"url":null,"abstract":"Multi sensor fusion has been widely used in recognition problems. Most existing works highly depend on the calibration between different sensors, but less on modeling and reasoning of the co-incidence of multiple hints. In this paper, we propose a generic framework for recognition and clustering problem using a non-parametric Dirichlet hierarchical model, named DP-Fusion. It enables online labeling, clustering and recognition of sequential data simultaneously, while considering multiple types of sensor readings. The algorithm is data-driven, which does not depend on priorknowledge of the data structure. The results show the feasibility and reliability against noise data.","PeriodicalId":103145,"journal":{"name":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"64 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"DP-Fusion: A generic framework for online multi sensor recognition\",\"authors\":\"Ming Liu, Lujia Wang, R. Siegwart\",\"doi\":\"10.1109/MFI.2012.6343031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi sensor fusion has been widely used in recognition problems. Most existing works highly depend on the calibration between different sensors, but less on modeling and reasoning of the co-incidence of multiple hints. In this paper, we propose a generic framework for recognition and clustering problem using a non-parametric Dirichlet hierarchical model, named DP-Fusion. It enables online labeling, clustering and recognition of sequential data simultaneously, while considering multiple types of sensor readings. The algorithm is data-driven, which does not depend on priorknowledge of the data structure. The results show the feasibility and reliability against noise data.\",\"PeriodicalId\":103145,\"journal\":{\"name\":\"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"64 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.2012.6343031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2012.6343031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

多传感器融合在识别问题中得到了广泛的应用。现有的工作大多高度依赖于不同传感器之间的标定,而较少依赖于多线索共关联的建模和推理。在本文中,我们提出了一个通用的框架识别和聚类问题,使用非参数狄利克雷层次模型,命名为DP-Fusion。它可以同时在线标记、聚类和识别序列数据,同时考虑多种类型的传感器读数。该算法是数据驱动的,不依赖于数据结构的先验知识。结果表明,该方法对噪声数据具有可行性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DP-Fusion: A generic framework for online multi sensor recognition
Multi sensor fusion has been widely used in recognition problems. Most existing works highly depend on the calibration between different sensors, but less on modeling and reasoning of the co-incidence of multiple hints. In this paper, we propose a generic framework for recognition and clustering problem using a non-parametric Dirichlet hierarchical model, named DP-Fusion. It enables online labeling, clustering and recognition of sequential data simultaneously, while considering multiple types of sensor readings. The algorithm is data-driven, which does not depend on priorknowledge of the data structure. The results show the feasibility and reliability against noise data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信