Jackeline Abad Torres, D. Sahabandu, R. Dhal, Sandip Roy
{"title":"多智能体网络的局部开闭环操作","authors":"Jackeline Abad Torres, D. Sahabandu, R. Dhal, Sandip Roy","doi":"10.1145/2735960.2735982","DOIUrl":null,"url":null,"abstract":"We explore the manipulation of networked cyber-physical devices via external actuation or feedback control at a single location, in the context of a canonical multi-agent system model known as the double integrator network. One main focus is to understand whether or not, and how easily, a stakeholder can manipulate network's full dynamics by designing the actuation signal for one agent (in an open-loop sense). Additionally, we investigate the ability of the stakeholder to manipulate the multi-agent system, and achieve control objectives, via local feedback control. For both problems, we find that manipulation of the dynamics is crucially dependent on the network's graph and associated spectrum.","PeriodicalId":344612,"journal":{"name":"Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems","volume":" 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Local open- and closed-loop manipulation of multi-agent networks\",\"authors\":\"Jackeline Abad Torres, D. Sahabandu, R. Dhal, Sandip Roy\",\"doi\":\"10.1145/2735960.2735982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the manipulation of networked cyber-physical devices via external actuation or feedback control at a single location, in the context of a canonical multi-agent system model known as the double integrator network. One main focus is to understand whether or not, and how easily, a stakeholder can manipulate network's full dynamics by designing the actuation signal for one agent (in an open-loop sense). Additionally, we investigate the ability of the stakeholder to manipulate the multi-agent system, and achieve control objectives, via local feedback control. For both problems, we find that manipulation of the dynamics is crucially dependent on the network's graph and associated spectrum.\",\"PeriodicalId\":344612,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems\",\"volume\":\" 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2735960.2735982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2735960.2735982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Local open- and closed-loop manipulation of multi-agent networks
We explore the manipulation of networked cyber-physical devices via external actuation or feedback control at a single location, in the context of a canonical multi-agent system model known as the double integrator network. One main focus is to understand whether or not, and how easily, a stakeholder can manipulate network's full dynamics by designing the actuation signal for one agent (in an open-loop sense). Additionally, we investigate the ability of the stakeholder to manipulate the multi-agent system, and achieve control objectives, via local feedback control. For both problems, we find that manipulation of the dynamics is crucially dependent on the network's graph and associated spectrum.