使用ResNet潜在分离网络的单耳音乐源分离

Gino Brunner, Nawel Naas, Sveinn Pálsson, Oliver Richter, Roger Wattenhofer
{"title":"使用ResNet潜在分离网络的单耳音乐源分离","authors":"Gino Brunner, Nawel Naas, Sveinn Pálsson, Oliver Richter, Roger Wattenhofer","doi":"10.1109/ICTAI.2019.00157","DOIUrl":null,"url":null,"abstract":"In this paper we study the problem of monaural music source separation, where a piece of music is to be separated into its main constituent sources. We propose a simple yet effective deep neural network architecture based on a ResNet autoencoder. We investigate several data augmentation and post-processing methods to improve the separation results and outperform various state of the art monaural source separation methods on the DSD100 and MUSDB18 datasets. Our results suggest that in order to further push the state of the art in monaural music source separation we need more data, better data augmentation methods, as well as more effective post-processing methods; and not necessarily ever more complex neural network architectures.","PeriodicalId":346657,"journal":{"name":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","volume":" 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Monaural Music Source Separation using a ResNet Latent Separator Network\",\"authors\":\"Gino Brunner, Nawel Naas, Sveinn Pálsson, Oliver Richter, Roger Wattenhofer\",\"doi\":\"10.1109/ICTAI.2019.00157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the problem of monaural music source separation, where a piece of music is to be separated into its main constituent sources. We propose a simple yet effective deep neural network architecture based on a ResNet autoencoder. We investigate several data augmentation and post-processing methods to improve the separation results and outperform various state of the art monaural source separation methods on the DSD100 and MUSDB18 datasets. Our results suggest that in order to further push the state of the art in monaural music source separation we need more data, better data augmentation methods, as well as more effective post-processing methods; and not necessarily ever more complex neural network architectures.\",\"PeriodicalId\":346657,\"journal\":{\"name\":\"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)\",\"volume\":\" 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2019.00157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2019.00157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了单声源分离问题,即将一段音乐分离为其主要组成源。我们提出了一种简单而有效的基于ResNet自编码器的深度神经网络架构。我们研究了几种数据增强和后处理方法,以改善分离结果,并在DSD100和MUSDB18数据集上优于各种最先进的单声源分离方法。我们的研究结果表明,为了进一步推动单音源分离技术的发展,我们需要更多的数据,更好的数据增强方法,以及更有效的后处理方法;不一定是更复杂的神经网络架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monaural Music Source Separation using a ResNet Latent Separator Network
In this paper we study the problem of monaural music source separation, where a piece of music is to be separated into its main constituent sources. We propose a simple yet effective deep neural network architecture based on a ResNet autoencoder. We investigate several data augmentation and post-processing methods to improve the separation results and outperform various state of the art monaural source separation methods on the DSD100 and MUSDB18 datasets. Our results suggest that in order to further push the state of the art in monaural music source separation we need more data, better data augmentation methods, as well as more effective post-processing methods; and not necessarily ever more complex neural network architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信