一种鲁棒子空间恢复的前瞻算法

Guihong Wan, H. Schweitzer
{"title":"一种鲁棒子空间恢复的前瞻算法","authors":"Guihong Wan, H. Schweitzer","doi":"10.1109/ICDM51629.2021.00175","DOIUrl":null,"url":null,"abstract":"A common task in the analysis of data is to compute an approximate embedding of the data in a low-dimensional subspace. The standard algorithm for computing this subspace is the well-known Principal Component Analysis (PCA). PCA can be extended to the case where some data points are viewed as “outliers” that can be ignored, allowing the remaining data points (inliers”) to be more tightly embedded. We develop a new algorithm that detects outliers so that they can be removed prior to applying PCA. The main idea is to rank each point by looking ahead and evaluating the change in the global PCA error if that point is considered as an outlier. Our technical contribution is showing that this lookahead procedure can be implemented efficiently, producing an accurate algorithm with running time not much above the running time of standard PCA algorithms.","PeriodicalId":320970,"journal":{"name":"2021 IEEE International Conference on Data Mining (ICDM)","volume":" 65","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Lookahead Algorithm for Robust Subspace Recovery\",\"authors\":\"Guihong Wan, H. Schweitzer\",\"doi\":\"10.1109/ICDM51629.2021.00175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A common task in the analysis of data is to compute an approximate embedding of the data in a low-dimensional subspace. The standard algorithm for computing this subspace is the well-known Principal Component Analysis (PCA). PCA can be extended to the case where some data points are viewed as “outliers” that can be ignored, allowing the remaining data points (inliers”) to be more tightly embedded. We develop a new algorithm that detects outliers so that they can be removed prior to applying PCA. The main idea is to rank each point by looking ahead and evaluating the change in the global PCA error if that point is considered as an outlier. Our technical contribution is showing that this lookahead procedure can be implemented efficiently, producing an accurate algorithm with running time not much above the running time of standard PCA algorithms.\",\"PeriodicalId\":320970,\"journal\":{\"name\":\"2021 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\" 65\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM51629.2021.00175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM51629.2021.00175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数据分析中的一个常见任务是计算数据在低维子空间中的近似嵌入。计算该子空间的标准算法是众所周知的主成分分析(PCA)。PCA可以扩展到这样的情况:一些数据点被视为可以忽略的“异常值”,允许更紧密地嵌入剩余的数据点(内线)。我们开发了一种新的算法来检测异常值,以便它们可以在应用PCA之前被删除。其主要思想是,如果将每个点视为离群值,则通过提前查看和评估全局PCA误差的变化来对每个点进行排序。我们在技术上的贡献是表明这个前瞻性过程可以有效地实现,产生一个精确的算法,其运行时间并不比标准PCA算法的运行时间高多少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Lookahead Algorithm for Robust Subspace Recovery
A common task in the analysis of data is to compute an approximate embedding of the data in a low-dimensional subspace. The standard algorithm for computing this subspace is the well-known Principal Component Analysis (PCA). PCA can be extended to the case where some data points are viewed as “outliers” that can be ignored, allowing the remaining data points (inliers”) to be more tightly embedded. We develop a new algorithm that detects outliers so that they can be removed prior to applying PCA. The main idea is to rank each point by looking ahead and evaluating the change in the global PCA error if that point is considered as an outlier. Our technical contribution is showing that this lookahead procedure can be implemented efficiently, producing an accurate algorithm with running time not much above the running time of standard PCA algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信