一种自动视觉检测系统的特征选择方法

H. C. Garcia, J. Villalobos
{"title":"一种自动视觉检测系统的特征选择方法","authors":"H. C. Garcia, J. Villalobos","doi":"10.1109/INDIN.2008.4618318","DOIUrl":null,"url":null,"abstract":"Automated visual inspection (AVI) systems are nowadays considered essential in the assembly of surface mounted devices (SMD). The general goal of this research centers on developing self-training AVI systems for the inspection of SMD components. In this paper, it is proposed a new feature selection methodology based on a stepwise variable selection. The procedure uses an estimation of the marginal misclassification error rate (MER) as the figure of merit to introduce new features in the quadratic classifier used by the inspection system. This marginal error rate is estimated by using the densities of the conditional stochastic representations of the underlying quadratic discriminant function. In this paper we show that the application of the proposed methodology to the inspecting of SMD components results in significant savings of computational time in the estimation of classification error over the traditional simulation and cross-validation methods.","PeriodicalId":112553,"journal":{"name":"2008 6th IEEE International Conference on Industrial Informatics","volume":" 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A feature selection method for Automated Visual Inspection systems\",\"authors\":\"H. C. Garcia, J. Villalobos\",\"doi\":\"10.1109/INDIN.2008.4618318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated visual inspection (AVI) systems are nowadays considered essential in the assembly of surface mounted devices (SMD). The general goal of this research centers on developing self-training AVI systems for the inspection of SMD components. In this paper, it is proposed a new feature selection methodology based on a stepwise variable selection. The procedure uses an estimation of the marginal misclassification error rate (MER) as the figure of merit to introduce new features in the quadratic classifier used by the inspection system. This marginal error rate is estimated by using the densities of the conditional stochastic representations of the underlying quadratic discriminant function. In this paper we show that the application of the proposed methodology to the inspecting of SMD components results in significant savings of computational time in the estimation of classification error over the traditional simulation and cross-validation methods.\",\"PeriodicalId\":112553,\"journal\":{\"name\":\"2008 6th IEEE International Conference on Industrial Informatics\",\"volume\":\" 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 6th IEEE International Conference on Industrial Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2008.4618318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 6th IEEE International Conference on Industrial Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2008.4618318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

如今,自动视觉检测(AVI)系统被认为是表面安装设备(SMD)组装中必不可少的。这项研究的总体目标是开发用于SMD组件检测的自我训练AVI系统。本文提出了一种基于逐步变量选择的特征选择方法。该方法使用边际误分类错误率(MER)的估计作为优点图,在检测系统使用的二次分类器中引入新的特征。这个边际错误率是通过使用潜在的二次判别函数的条件随机表示的密度来估计的。在本文中,我们表明,将所提出的方法应用于SMD组件的检测,在估计分类误差方面比传统的模拟和交叉验证方法节省了大量的计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A feature selection method for Automated Visual Inspection systems
Automated visual inspection (AVI) systems are nowadays considered essential in the assembly of surface mounted devices (SMD). The general goal of this research centers on developing self-training AVI systems for the inspection of SMD components. In this paper, it is proposed a new feature selection methodology based on a stepwise variable selection. The procedure uses an estimation of the marginal misclassification error rate (MER) as the figure of merit to introduce new features in the quadratic classifier used by the inspection system. This marginal error rate is estimated by using the densities of the conditional stochastic representations of the underlying quadratic discriminant function. In this paper we show that the application of the proposed methodology to the inspecting of SMD components results in significant savings of computational time in the estimation of classification error over the traditional simulation and cross-validation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信