基于fpga的机器人定位系统节能可重构加速器

Qiang Liu, Zishen Wan, Bo Yu, Weizhuang Liu, Shaoshan Liu, A. Raychowdhury
{"title":"基于fpga的机器人定位系统节能可重构加速器","authors":"Qiang Liu, Zishen Wan, Bo Yu, Weizhuang Liu, Shaoshan Liu, A. Raychowdhury","doi":"10.1109/CICC53496.2022.9772870","DOIUrl":null,"url":null,"abstract":"A robot usually localizes itself in an environment by estimating the collection of its position and rotation states, while constructing a map of unknown surroundings, giving rise to the notion of Simultaneous Localization and Mapping (SLAM). SLAM is a fundamental kernel in autonomous machines at all computing scales, from drones, AR, VR to self-driving cars. Principled mathematical solutions for SLAM involve filtering-based or non-linear optimization-based (Fig. 1a), where the latter recently shows higher robustness but with intensive computation. Prior ASICs [1], [2] and FPGAs [3], [4], [5] have accelerated SLAM on hardware, but they usually target one specific design. In this work, we present a runtime-reconfigurable FPGA accelerator for robotic localization tasks. We exploit SLAM-specific data locality, sparsity, reuse, and parallelism, and achieve >5x performance improvement over the state-of-the-art. Especially, our design is reconfigurable at runtime according to the environment and platform to save power while sustaining accuracy and performance.","PeriodicalId":415990,"journal":{"name":"2022 IEEE Custom Integrated Circuits Conference (CICC)","volume":" 47","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An Energy-Efficient and Runtime-Reconfigurable FPGA-Based Accelerator for Robotic Localization Systems\",\"authors\":\"Qiang Liu, Zishen Wan, Bo Yu, Weizhuang Liu, Shaoshan Liu, A. Raychowdhury\",\"doi\":\"10.1109/CICC53496.2022.9772870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A robot usually localizes itself in an environment by estimating the collection of its position and rotation states, while constructing a map of unknown surroundings, giving rise to the notion of Simultaneous Localization and Mapping (SLAM). SLAM is a fundamental kernel in autonomous machines at all computing scales, from drones, AR, VR to self-driving cars. Principled mathematical solutions for SLAM involve filtering-based or non-linear optimization-based (Fig. 1a), where the latter recently shows higher robustness but with intensive computation. Prior ASICs [1], [2] and FPGAs [3], [4], [5] have accelerated SLAM on hardware, but they usually target one specific design. In this work, we present a runtime-reconfigurable FPGA accelerator for robotic localization tasks. We exploit SLAM-specific data locality, sparsity, reuse, and parallelism, and achieve >5x performance improvement over the state-of-the-art. Especially, our design is reconfigurable at runtime according to the environment and platform to save power while sustaining accuracy and performance.\",\"PeriodicalId\":415990,\"journal\":{\"name\":\"2022 IEEE Custom Integrated Circuits Conference (CICC)\",\"volume\":\" 47\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Custom Integrated Circuits Conference (CICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICC53496.2022.9772870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC53496.2022.9772870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

机器人通常通过估计其位置和旋转状态的集合来定位自身在环境中的位置,同时构建未知环境的地图,这就产生了同时定位和映射(SLAM)的概念。SLAM是所有计算规模的自动机器的基本内核,从无人机、AR、VR到自动驾驶汽车。SLAM的原则数学解决方案包括基于滤波或基于非线性优化(图1a),后者最近显示出更高的鲁棒性,但需要密集的计算。先前的asic[1],[2]和fpga[3],[4],[5]已经加速了硬件上的SLAM,但它们通常针对一个特定的设计。在这项工作中,我们提出了一个运行时可重构的FPGA加速器,用于机器人定位任务。我们利用了slam特有的数据局部性、稀疏性、重用性和并行性,并实现了5倍以上的性能改进。特别是,我们的设计可以根据环境和平台在运行时重新配置,以节省功耗,同时保持精度和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Energy-Efficient and Runtime-Reconfigurable FPGA-Based Accelerator for Robotic Localization Systems
A robot usually localizes itself in an environment by estimating the collection of its position and rotation states, while constructing a map of unknown surroundings, giving rise to the notion of Simultaneous Localization and Mapping (SLAM). SLAM is a fundamental kernel in autonomous machines at all computing scales, from drones, AR, VR to self-driving cars. Principled mathematical solutions for SLAM involve filtering-based or non-linear optimization-based (Fig. 1a), where the latter recently shows higher robustness but with intensive computation. Prior ASICs [1], [2] and FPGAs [3], [4], [5] have accelerated SLAM on hardware, but they usually target one specific design. In this work, we present a runtime-reconfigurable FPGA accelerator for robotic localization tasks. We exploit SLAM-specific data locality, sparsity, reuse, and parallelism, and achieve >5x performance improvement over the state-of-the-art. Especially, our design is reconfigurable at runtime according to the environment and platform to save power while sustaining accuracy and performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信