用于数据聚类的增长贝叶斯自组织映射

Xiaolian Guo, Haiying Wang, D. H. Glass
{"title":"用于数据聚类的增长贝叶斯自组织映射","authors":"Xiaolian Guo, Haiying Wang, D. H. Glass","doi":"10.1109/ICMLC.2012.6359011","DOIUrl":null,"url":null,"abstract":"An extended Bayesian self-organizing map (BSOM) learning process is proposed, called the growing BSOM (GBSOM). It starts with two neurons and adds new neurons to the network via a process in which the neuron with the lowest individual log-likelihood is identified. It can automatically terminate and find the optimal number of neurons to represent the given dataset during the learning process. In this paper, three synthetic datasets and one real dataset are used to test the proposed algorithm, and three stopping criteria are used to automatically terminate the learning process, which are Bayesian information criterion (BIC) and two clustering validity indices: DB-Index and SV-Index. According to the results, using BIC as stopping criterion is better than using DB-Index and SV-Index as stopping criteria.","PeriodicalId":128006,"journal":{"name":"2012 International Conference on Machine Learning and Cybernetics","volume":" 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A growing Bayesian self-organizing map for data clustering\",\"authors\":\"Xiaolian Guo, Haiying Wang, D. H. Glass\",\"doi\":\"10.1109/ICMLC.2012.6359011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An extended Bayesian self-organizing map (BSOM) learning process is proposed, called the growing BSOM (GBSOM). It starts with two neurons and adds new neurons to the network via a process in which the neuron with the lowest individual log-likelihood is identified. It can automatically terminate and find the optimal number of neurons to represent the given dataset during the learning process. In this paper, three synthetic datasets and one real dataset are used to test the proposed algorithm, and three stopping criteria are used to automatically terminate the learning process, which are Bayesian information criterion (BIC) and two clustering validity indices: DB-Index and SV-Index. According to the results, using BIC as stopping criterion is better than using DB-Index and SV-Index as stopping criteria.\",\"PeriodicalId\":128006,\"journal\":{\"name\":\"2012 International Conference on Machine Learning and Cybernetics\",\"volume\":\" 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2012.6359011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2012.6359011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种扩展的贝叶斯自组织映射(BSOM)学习过程,称为生长的贝叶斯自组织映射(GBSOM)。它从两个神经元开始,并通过一个过程将新的神经元添加到网络中,在这个过程中,具有最低个体对数似然的神经元被识别出来。它可以在学习过程中自动终止并找到代表给定数据集的最优神经元数量。本文采用3个合成数据集和1个真实数据集对该算法进行了测试,并采用贝叶斯信息准则(BIC)和聚类有效性指标DB-Index和SV-Index 3个停止准则自动终止学习过程。结果表明,采用BIC作为停止指标优于采用DB-Index和SV-Index作为停止指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A growing Bayesian self-organizing map for data clustering
An extended Bayesian self-organizing map (BSOM) learning process is proposed, called the growing BSOM (GBSOM). It starts with two neurons and adds new neurons to the network via a process in which the neuron with the lowest individual log-likelihood is identified. It can automatically terminate and find the optimal number of neurons to represent the given dataset during the learning process. In this paper, three synthetic datasets and one real dataset are used to test the proposed algorithm, and three stopping criteria are used to automatically terminate the learning process, which are Bayesian information criterion (BIC) and two clustering validity indices: DB-Index and SV-Index. According to the results, using BIC as stopping criterion is better than using DB-Index and SV-Index as stopping criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信