基于IKS混合模型的Web服务质量预测

B. Trstenjak, D. Donko
{"title":"基于IKS混合模型的Web服务质量预测","authors":"B. Trstenjak, D. Donko","doi":"10.1109/BIHTEL.2014.6987636","DOIUrl":null,"url":null,"abstract":"Internet and various services offered by it has become a daily routine. The Quality of Web Service (QWS) has become a significant factor in distinguishing the success of service providers. The main purpose of this paper is to analyze quality prediction using the IKS hybrid model with a new approach of data classification. We present the IKS hybrid model. The model combines selection of features, clustering and classification techniques. Three techniques are used (Information Gain (IG), K-means and Support Vector Machine (SVM)) over QWS dataset with collected 5,000 Web services. Our experiments and test results show that the proposed hybrid approach has achieved promising results in predicting the quality of web services and it represents a good basis for further development and research.","PeriodicalId":415492,"journal":{"name":"2014 X International Symposium on Telecommunications (BIHTEL)","volume":" 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Predicting Quality of Web Service using IKS hybrid model\",\"authors\":\"B. Trstenjak, D. Donko\",\"doi\":\"10.1109/BIHTEL.2014.6987636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet and various services offered by it has become a daily routine. The Quality of Web Service (QWS) has become a significant factor in distinguishing the success of service providers. The main purpose of this paper is to analyze quality prediction using the IKS hybrid model with a new approach of data classification. We present the IKS hybrid model. The model combines selection of features, clustering and classification techniques. Three techniques are used (Information Gain (IG), K-means and Support Vector Machine (SVM)) over QWS dataset with collected 5,000 Web services. Our experiments and test results show that the proposed hybrid approach has achieved promising results in predicting the quality of web services and it represents a good basis for further development and research.\",\"PeriodicalId\":415492,\"journal\":{\"name\":\"2014 X International Symposium on Telecommunications (BIHTEL)\",\"volume\":\" 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 X International Symposium on Telecommunications (BIHTEL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIHTEL.2014.6987636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 X International Symposium on Telecommunications (BIHTEL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIHTEL.2014.6987636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

互联网及其提供的各种服务已经成为日常生活的一部分。Web服务质量(QWS)已经成为区分服务提供者成功与否的一个重要因素。本文的主要目的是利用IKS混合模型和一种新的数据分类方法来分析质量预测。我们提出了IKS混合模型。该模型结合了特征选择、聚类和分类技术。在收集了5000个Web服务的QWS数据集上使用了三种技术(信息增益(IG), K-means和支持向量机(SVM))。实验和测试结果表明,本文提出的混合方法在预测web服务质量方面取得了良好的效果,为进一步的开发和研究奠定了良好的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Quality of Web Service using IKS hybrid model
Internet and various services offered by it has become a daily routine. The Quality of Web Service (QWS) has become a significant factor in distinguishing the success of service providers. The main purpose of this paper is to analyze quality prediction using the IKS hybrid model with a new approach of data classification. We present the IKS hybrid model. The model combines selection of features, clustering and classification techniques. Three techniques are used (Information Gain (IG), K-means and Support Vector Machine (SVM)) over QWS dataset with collected 5,000 Web services. Our experiments and test results show that the proposed hybrid approach has achieved promising results in predicting the quality of web services and it represents a good basis for further development and research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信