杂乱的标签布局

Yu Meng, Hui Zhang, Mengchen Liu, Shixia Liu
{"title":"杂乱的标签布局","authors":"Yu Meng, Hui Zhang, Mengchen Liu, Shixia Liu","doi":"10.1109/PACIFICVIS.2015.7156379","DOIUrl":null,"url":null,"abstract":"A high-quality label layout is critical for effective information understanding and consumption. Existing labeling methods fail to help users quickly gain an overview of visualized data when the number of labels is large. Visual clutter is a major challenge preventing these methods from being applied to real-world applications. To address this, we propose a context-aware label layout that can measure and reduce visual clutter during the layout process. Our method formulates the clutter model using four factors: confusion, visual connection, distance, and intersection. Based on this clutter model, an effective clutter-aware labeling method has been developed that can generate clear and legible label layouts in different visualizations. We have applied our method to several types of visualizations and the results show promise, especially in support of an uncluttered and informative label layout.","PeriodicalId":177381,"journal":{"name":"2015 IEEE Pacific Visualization Symposium (PacificVis)","volume":" 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Clutter-aware label layout\",\"authors\":\"Yu Meng, Hui Zhang, Mengchen Liu, Shixia Liu\",\"doi\":\"10.1109/PACIFICVIS.2015.7156379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A high-quality label layout is critical for effective information understanding and consumption. Existing labeling methods fail to help users quickly gain an overview of visualized data when the number of labels is large. Visual clutter is a major challenge preventing these methods from being applied to real-world applications. To address this, we propose a context-aware label layout that can measure and reduce visual clutter during the layout process. Our method formulates the clutter model using four factors: confusion, visual connection, distance, and intersection. Based on this clutter model, an effective clutter-aware labeling method has been developed that can generate clear and legible label layouts in different visualizations. We have applied our method to several types of visualizations and the results show promise, especially in support of an uncluttered and informative label layout.\",\"PeriodicalId\":177381,\"journal\":{\"name\":\"2015 IEEE Pacific Visualization Symposium (PacificVis)\",\"volume\":\" 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACIFICVIS.2015.7156379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2015.7156379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

高质量的标签布局对于有效的信息理解和消费至关重要。当标签数量较大时,现有的标注方法无法帮助用户快速获得可视化数据的概览。视觉混乱是阻碍这些方法应用于实际应用的主要挑战。为了解决这个问题,我们提出了一种上下文感知的标签布局,可以在布局过程中测量和减少视觉混乱。我们的方法使用四个因素来构建杂乱模型:混淆、视觉连接、距离和交集。基于该杂波模型,开发了一种有效的杂波感知标注方法,可以在不同的可视化效果下生成清晰易读的标签布局。我们已经将我们的方法应用于几种类型的可视化,结果显示出希望,特别是在支持整洁和信息丰富的标签布局方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clutter-aware label layout
A high-quality label layout is critical for effective information understanding and consumption. Existing labeling methods fail to help users quickly gain an overview of visualized data when the number of labels is large. Visual clutter is a major challenge preventing these methods from being applied to real-world applications. To address this, we propose a context-aware label layout that can measure and reduce visual clutter during the layout process. Our method formulates the clutter model using four factors: confusion, visual connection, distance, and intersection. Based on this clutter model, an effective clutter-aware labeling method has been developed that can generate clear and legible label layouts in different visualizations. We have applied our method to several types of visualizations and the results show promise, especially in support of an uncluttered and informative label layout.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信