切比雪夫排列信道代码的字符串连接构造

Y. M. Chee, H. M. Kiah, S. Ling, T. T. Nguyen, Van Khu Vu, Xiande Zhang
{"title":"切比雪夫排列信道代码的字符串连接构造","authors":"Y. M. Chee, H. M. Kiah, S. Ling, T. T. Nguyen, Van Khu Vu, Xiande Zhang","doi":"10.1109/ISIT.2016.7541814","DOIUrl":null,"url":null,"abstract":"We construct codes for the Chebyshev permutation channels whose study was initiated by Langberg et al. (2015). We establish several recursive code constructions and present efficient decoding algorithms for our codes. In particular, our constructions yield a family of binary codes of rate 0.643 when r = 1. The upper bound on the rate in this case is 2/3 and the previous highest rate is 0.609.","PeriodicalId":198767,"journal":{"name":"2016 IEEE International Symposium on Information Theory (ISIT)","volume":" 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"String concatenation construction for Chebyshev permutation channel codes\",\"authors\":\"Y. M. Chee, H. M. Kiah, S. Ling, T. T. Nguyen, Van Khu Vu, Xiande Zhang\",\"doi\":\"10.1109/ISIT.2016.7541814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct codes for the Chebyshev permutation channels whose study was initiated by Langberg et al. (2015). We establish several recursive code constructions and present efficient decoding algorithms for our codes. In particular, our constructions yield a family of binary codes of rate 0.643 when r = 1. The upper bound on the rate in this case is 2/3 and the previous highest rate is 0.609.\",\"PeriodicalId\":198767,\"journal\":{\"name\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\" 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2016.7541814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们构建了由Langberg等人(2015)发起的切比雪夫排列通道的编码。我们建立了几种递归码结构,并给出了有效的译码算法。特别是,当r = 1时,我们的构造产生了一组率为0.643的二进制码。在这种情况下,比率的上界是2/3,之前的最高比率是0.609。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
String concatenation construction for Chebyshev permutation channel codes
We construct codes for the Chebyshev permutation channels whose study was initiated by Langberg et al. (2015). We establish several recursive code constructions and present efficient decoding algorithms for our codes. In particular, our constructions yield a family of binary codes of rate 0.643 when r = 1. The upper bound on the rate in this case is 2/3 and the previous highest rate is 0.609.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信